Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Neutrino Detection Experiment in China Up and Running

17.08.2011
Deep under a hillside near Hong Kong, a pair of new antineutrino detectors are warming up for some serious physics.

Twin detectors recently installed in the first of three experimental halls in the Daya Bay Reactor Neutrino Experiment are now recording interactions of elementary particles called antineutrinos that are produced by powerful reactors at the China Guangdong Nuclear Power Group power plant located about 55 kilometers from Hong Kong.

The event marks the first step in the international effort to measure a puzzling property of neutrinos and antineutrinos that may underlie basic properties of matter and why matter predominates over antimatter in the universe.

Theories state that equal portions of matter and antimatter were created during the Big Bang, but today matter prevails, explains Karsten Heeger, a University of Wisconsin-Madison physics professor and one of the leading scientists in the experiment. “Right now there is not a good understanding of what causes the matter-antimatter imbalance in the universe,” he says. “We live in a world of matter and don’t know where all the antimatter went.”

Using antineutrinos as a probe, the Daya Bay experiment seeks to understand how the difference came about by measuring with unprecedented precision a crucial type of transformation called neutrino mixing. Neutrinos come in three types or “flavors” – electron, muon, and tau – that can morph or oscillate from one form to another as they travel through space and matter. Two of the oscillations have been studied but one transformation of electron neutrinos (called è13 or theta one-three) has not been measured.

“This is a remarkable achievement after eight years of effort – four years of planning and four years of construction – by hundreds of physicists and engineers from around the globe,” says Yifang Wang of the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences, a co-spokesperson for the Daya Bay Collaboration.

Because they are tiny and uncharged, neutrinos and antineutrinos can pass through even huge amounts of matter such as the planet Earth with no interactions, a property that makes them very difficult to detect and study. The large size and sensitivity of the detectors and power of the reactors at Daya Bay will provide the best opportunity to date to collect enough antineutrinos to precisely measure the last unknown neutrino mixing angle.

“The results will be a major contribution to understanding the role of neutrinos in the evolution of basic kinds of matter in the earliest moments after the Big Bang, and why there is more matter than antimatter in the universe today,” says co-spokesperson Kam-Biu Luk of the U.S Department of Energy’s Lawrence Berkeley National Laboratory and the University of California at Berkeley.

The massive antineutrino detectors are positioned underground and submerged in pools of ultrapure water to shield them from cosmic rays, natural sources of radiation, and other background signals. When completed, the experiment will consist of eight 125-ton antineutrino detectors, two each in two experimental halls near the Daya Bay and Ling Ao nuclear power reactors and four in a far hall about two kilometers away.

“By having these different locations, we can see the neutrinos at different distances from the reactors and how they change as they travel through space,” says UW-Madison’s Heeger, who is the U.S. manager for the antineutrino detectors.

Heeger has worked on the experiment for the past eight years and since 2006 his group in the physics department has been responsible for much of the design and development of the antineutrino detectors. Together with engineers from the UW-Madison Physical Sciences Laboratory (PSL), they developed the acrylic target vessels in the interior of each detector, developed precise calibration of the target liquids, modeled the integration of all detector components, and are providing oversight of the assembly and installation process currently underway in China.

“At PSL, we take projects from the ‘napkin phase’ to a working device,” explains Jeff Cherwinka, a senior engineer with extensive experience in high-energy physics engineering. Cherwinka will become chief U.S. engineer for the final phase of Daya Bay construction beginning in late September.

The UW-Madison physics department and PSL also built other key components in the experimental halls, including a filling apparatus and target mass measurement system critical for filling and calibrating the detector targets. Engineers and physicists from UW Madison have maintained a continuous on-site presence in China to supervise the installation and initial commissioning.

The Daya Bay experiment is a new partnership in high-energy physics between the U.S. and China. UW-Madison’s role in this international project has provided research and education opportunities both locally and in China for more than a dozen UW students.

“The Daya Bay experiment establishes Wisconsin's international leadership at another frontier in neutrino physics,” says Heeger. “It’s incredibly exciting to go from a detector model to seeing everything coming together on site and we are now looking forward to the analysis of first data.”

The next two detectors are now being assembled in the second experimental hall and are expected to come on line early this fall. The remaining four detectors will be completed next year.

China and the U.S. lead the Daya Bay Reactor Neutrino Experiment, which also includes participants from Russia, the Czech Republic, Hong Kong, and Taiwan.

An image gallery is available at: http://neutrino.physics.wisc.edu/dayabay/2011-08-firstdata.php

Jill Sakai, jasakai@wisc.edu, (608) 262-9772

Karsten Heeger | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>