Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Neutrino Detection Experiment in China Up and Running

17.08.2011
Deep under a hillside near Hong Kong, a pair of new antineutrino detectors are warming up for some serious physics.

Twin detectors recently installed in the first of three experimental halls in the Daya Bay Reactor Neutrino Experiment are now recording interactions of elementary particles called antineutrinos that are produced by powerful reactors at the China Guangdong Nuclear Power Group power plant located about 55 kilometers from Hong Kong.

The event marks the first step in the international effort to measure a puzzling property of neutrinos and antineutrinos that may underlie basic properties of matter and why matter predominates over antimatter in the universe.

Theories state that equal portions of matter and antimatter were created during the Big Bang, but today matter prevails, explains Karsten Heeger, a University of Wisconsin-Madison physics professor and one of the leading scientists in the experiment. “Right now there is not a good understanding of what causes the matter-antimatter imbalance in the universe,” he says. “We live in a world of matter and don’t know where all the antimatter went.”

Using antineutrinos as a probe, the Daya Bay experiment seeks to understand how the difference came about by measuring with unprecedented precision a crucial type of transformation called neutrino mixing. Neutrinos come in three types or “flavors” – electron, muon, and tau – that can morph or oscillate from one form to another as they travel through space and matter. Two of the oscillations have been studied but one transformation of electron neutrinos (called è13 or theta one-three) has not been measured.

“This is a remarkable achievement after eight years of effort – four years of planning and four years of construction – by hundreds of physicists and engineers from around the globe,” says Yifang Wang of the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences, a co-spokesperson for the Daya Bay Collaboration.

Because they are tiny and uncharged, neutrinos and antineutrinos can pass through even huge amounts of matter such as the planet Earth with no interactions, a property that makes them very difficult to detect and study. The large size and sensitivity of the detectors and power of the reactors at Daya Bay will provide the best opportunity to date to collect enough antineutrinos to precisely measure the last unknown neutrino mixing angle.

“The results will be a major contribution to understanding the role of neutrinos in the evolution of basic kinds of matter in the earliest moments after the Big Bang, and why there is more matter than antimatter in the universe today,” says co-spokesperson Kam-Biu Luk of the U.S Department of Energy’s Lawrence Berkeley National Laboratory and the University of California at Berkeley.

The massive antineutrino detectors are positioned underground and submerged in pools of ultrapure water to shield them from cosmic rays, natural sources of radiation, and other background signals. When completed, the experiment will consist of eight 125-ton antineutrino detectors, two each in two experimental halls near the Daya Bay and Ling Ao nuclear power reactors and four in a far hall about two kilometers away.

“By having these different locations, we can see the neutrinos at different distances from the reactors and how they change as they travel through space,” says UW-Madison’s Heeger, who is the U.S. manager for the antineutrino detectors.

Heeger has worked on the experiment for the past eight years and since 2006 his group in the physics department has been responsible for much of the design and development of the antineutrino detectors. Together with engineers from the UW-Madison Physical Sciences Laboratory (PSL), they developed the acrylic target vessels in the interior of each detector, developed precise calibration of the target liquids, modeled the integration of all detector components, and are providing oversight of the assembly and installation process currently underway in China.

“At PSL, we take projects from the ‘napkin phase’ to a working device,” explains Jeff Cherwinka, a senior engineer with extensive experience in high-energy physics engineering. Cherwinka will become chief U.S. engineer for the final phase of Daya Bay construction beginning in late September.

The UW-Madison physics department and PSL also built other key components in the experimental halls, including a filling apparatus and target mass measurement system critical for filling and calibrating the detector targets. Engineers and physicists from UW Madison have maintained a continuous on-site presence in China to supervise the installation and initial commissioning.

The Daya Bay experiment is a new partnership in high-energy physics between the U.S. and China. UW-Madison’s role in this international project has provided research and education opportunities both locally and in China for more than a dozen UW students.

“The Daya Bay experiment establishes Wisconsin's international leadership at another frontier in neutrino physics,” says Heeger. “It’s incredibly exciting to go from a detector model to seeing everything coming together on site and we are now looking forward to the analysis of first data.”

The next two detectors are now being assembled in the second experimental hall and are expected to come on line early this fall. The remaining four detectors will be completed next year.

China and the U.S. lead the Daya Bay Reactor Neutrino Experiment, which also includes participants from Russia, the Czech Republic, Hong Kong, and Taiwan.

An image gallery is available at: http://neutrino.physics.wisc.edu/dayabay/2011-08-firstdata.php

Jill Sakai, jasakai@wisc.edu, (608) 262-9772

Karsten Heeger | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>