Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrino data to flow in 2010; NOvA scientists tune design

11.01.2010
International collaboration hunting oscillation of muon to electron
Physicists may see data as soon as late summer from the prototype for a $278 million science experiment in northern Minnesota that is being designed to find clues to some fundamental mysteries of the universe.

But it could take years before the nation's largest "neutrino" detector answers the profound questions that matter to scientists.

Construction is underway now on a 220-ton detector that is the "integration prototype" for a much larger 14,000-ton detector. Both are part of NOvA, a cooperative project of the Department of Energy's Fermi National Accelerator Laboratory near Chicago and the University of Minnesota's school of physics and astronomy. The project may ultimately aid understanding of matter and dark matter, how the universe formed and evolved, and current astrophysical events.

DOE gave approval Oct. 29, 2009 for "full construction start" as part of the American Recovery and Reinvestment Act. There are 180 scientists and engineers from 28 institutions around the world collaborating on NOvA.

... more about:
»Big Bang »Fermilab »Neutrino »Nova »SMU

About 40 scientists from the international collaboration are meeting Jan. 8-10 at Southern Methodist University in Dallas. The meeting is the first for the collaboration since DOE's approval, said John Cooper, NOvA project manager at Fermilab. For more information see www.smuresearch.com.

Collaboration scientists will hear technical presentations from one another during the three-day SMU meeting, where they'll refine NOvA's design, including the technical details of software, hardware and calibration, said Thomas Coan, associate professor of physics at SMU and a scientist on the collaboration team.

The integration prototype, known as the Near Detector because it's at Fermilab, and the larger detector, known as the Far Detector because it's farther from Fermilab — are essentially hundreds of thousands of plastic tubes enclosing a massive amount of highly purified mineral oil. The purpose is to detect the highly significant fundamental subatomic particle called the "neutrino" and better understand its nature. NOvA, when construction is completed, will be the largest neutrino experiment in the United States.

"The 'detector prototype' has two purposes," said Cooper. "First it serves as an 'integration prototype' forcing us to find all the problems on a real device, and second it will become the 'Near Detector' at Fermilab."

The integration prototype will operate on the surface at Fermilab for about a year starting in late summer 2010, Cooper said. Then in 2012 it will move 300 feet underground to become the Near Detector, he said. Construction on the Far Detector project began in June near Ash River, Minn. The detector should be fully operational by September 2013, according to Fermilab.

A hard-to-observe fundamental particle that travels alone, the neutrino has little or no mass, so rarely interacts with other particles.

Neutrinos are ubiquitous throughout our universe. They were produced during the Big Bang, and many of those are still around. New ones are constantly being created too, through natural occurrences like solar fusion in the sun's core, or radioactive elements decaying in the Earth's mantle, as well as when the particle accelerator at Fermilab purposely smashes protons into carbon foils.

Our sun produces so many that hundreds of billions are zinging through our bodies every second, Coan said. It's hoped the new detector can resolve questions surrounding three different kinds of neutrinos — electron, tau and muon — and their "oscillation" from one type to another as they travel, he said.

Scientists at the new detectors will analyze data from Fermilab's neutrino beam to observe evidence of neutrinos when the speedy, lightweight particles occasionally smash into the carbon nuclei in the scintillating oil of the detector, causing a burst of light flashes, Coan said.

NOvA is looking for the most elusive oscillation of the muon type of neutrino to the electron type, Cooper said.

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU's seven degree-granting schools.

Kim Cobb | EurekAlert!
Further information:
http://www.smu.edu
http://www.smuresearch.com

Further reports about: Big Bang Fermilab Neutrino Nova SMU

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>