Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Netting new physics from a stellar collapse

24.08.2009
Failed supernovae could provide a strong flux of neutrinos near the detection limit of current observatories

Stars more than eight times the mass of our Sun eventually collapse under their own weight, and may explode into spectacular supernovae. The temperatures and pressures generated in these events are so intense they create a large burst of particles called neutrinos, which eventually reach Earth.

Now, Cecilia Lunardini at Arizona State University and RIKEN BNL Research Center in Upton, USA, has calculated that lots of neutrinos may also reach Earth from ‘failed supernovae’—huge stars that collapse without exploding to produce black holes1.

The neutrino contribution from these failed supernovae could greatly increase the total flux of neutrinos reaching Earth from millions of collapsing stars throughout the universe. Lunardini calls this total the ‘diffuse supernova neutrino flux’.

“In the diffuse flux, the contribution of each supernova is very small, but the total is detectable,” she says. “We only need to reach the right experimental sensitivity to start detecting it.”

Unfortunately, neutrinos are notoriously difficult to detect because they barely interact with other matter. One of the world’s best detectors is the Super-Kamiokande (‘Super-K’) neutrino observatory, situated in a mine beneath Gifu prefecture Japan, and even it requires 50,000 tons of ultra-pure water to scatter the neutrinos.

Lunardini decided to calculate whether a device like Super-K could detect neutrinos from supernovae collapsing into black holes.

“The idea that neutrinos are emitted in black-hole-forming collapses is not new,” she says. “The novelty of my work is in showing that these neutrinos can build up to a significant diffuse flux, thus adding to the flux from successful supernovae.”

In fact, Lunardini calculated that the Earth may receive up to one neutrino per square centimeter per second from failed supernovae. This is even more than the flux from successful supernovae, but probably beyond the detection limit of Super-K.

There is growing support in the scientific community to build larger, more sensitive neutrino detectors containing up to a million tons of water. Once these bigger detectors are built, Lunardini thinks it is only a matter of time before the diffuse neutrino flux can be measured. The results could reveal some fascinating new physics.

“[Failed supernovae] are very difficult to study with telescopes due to the fact that they do not explode but just disappear from the sky without much emission other than neutrinos,” says Lunardini. “The possibility to get information on these objects—even just to test their presence and how many there are in the universe—with neutrinos is exciting.”

Reference

1. Lunardini, C. Diffuse neutrino flux from failed supernovae. Physical Review Letters 102, 231101 (2009).

The corresponding author for this highlight is based at the RIKEN BNL Research Center Theory Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/765/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>