Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nothing But Net: The Physics of Free Throws

06.11.2009
Pay attention, Shaq: Two North Carolina State University engineers have figured out the best way to shoot a free throw – a frequently underappreciated skill that gets more important as the game clock winds down.

To get a swish rather than a brick, you need the best possible conditions for releasing the basketball from your hand, say Drs. Chau Tran and Larry Silverberg, mechanical and aerospace engineers at NC State and co-authors of a peer-reviewed study.

The engineers used hundreds of thousands of three-dimensional computer simulations of basketball free-throw trajectories to arrive at their conclusions. After running the simulations, Tran and Silverberg arrived at a number of major recommendations to improve free-throw shooting.

First, the engineers say that shooters should launch the shot with about three hertz of back spin. That translates to the ball making three complete backspinning revolutions before reaching the hoop. Back spin deadens the ball when it bounces off the rim or backboard, the engineers assert, giving the ball a better chance of settling through the net.

Where to aim? Tran and Silverberg say you should aim for the back of the rim, leaving close to 5 centimeters – about 2 inches – between the ball and the back of the rim. According to the simulations, aiming for the center of the basket decreases the probabilities of a successful shot by almost 3 percent.

The engineers say that the ball should be launched at 52 degrees to the horizontal. If you don’t have a protractor in your jersey, that means that the shot should, at the highest point in its arc to the basket, be less than 2 inches below the top of the backboard.

Free-throw shooters should also release the ball as high above the ground as possible, without adversely affecting the consistency of the shot; release the ball so it follows the imaginary line joining the player and the basket; and release the ball with a smooth body motion to get a consistent release speed.

“Our recommendations might make even the worst free-throw shooters – you know who you are, Shaquille O’Neal and Ben Wallace – break 60 percent from the free-throw line,” Silverberg says with tongue firmly in cheek. “A little bit of physics and a lot of practice can make everyone a better shooter from the free-throw line.”

The engineers used a men’s basketball for the study; it is heavier and a bit larger than basketballs used in women’s games. They also assumed that the basketball player doing the shooting was 6 feet 6 inches tall, and that he released the ball 6 inches above his head, so the “release height” was set to 7 feet. The free-throw line is 15 feet from the backboard, a cylinder-shaped opening that is 10 feet off the ground. Though it looks smaller, the diameter of a regulation basketball hoop is 18 inches; the diameter of a men’s basketball is a bit more than 9 inches.

Dr. Larry Silverberg, 919/515-5665 or lmsilver@ncsu.edu

Mick Kulikowski | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>