Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nothing But Net: The Physics of Free Throws

06.11.2009
Pay attention, Shaq: Two North Carolina State University engineers have figured out the best way to shoot a free throw – a frequently underappreciated skill that gets more important as the game clock winds down.

To get a swish rather than a brick, you need the best possible conditions for releasing the basketball from your hand, say Drs. Chau Tran and Larry Silverberg, mechanical and aerospace engineers at NC State and co-authors of a peer-reviewed study.

The engineers used hundreds of thousands of three-dimensional computer simulations of basketball free-throw trajectories to arrive at their conclusions. After running the simulations, Tran and Silverberg arrived at a number of major recommendations to improve free-throw shooting.

First, the engineers say that shooters should launch the shot with about three hertz of back spin. That translates to the ball making three complete backspinning revolutions before reaching the hoop. Back spin deadens the ball when it bounces off the rim or backboard, the engineers assert, giving the ball a better chance of settling through the net.

Where to aim? Tran and Silverberg say you should aim for the back of the rim, leaving close to 5 centimeters – about 2 inches – between the ball and the back of the rim. According to the simulations, aiming for the center of the basket decreases the probabilities of a successful shot by almost 3 percent.

The engineers say that the ball should be launched at 52 degrees to the horizontal. If you don’t have a protractor in your jersey, that means that the shot should, at the highest point in its arc to the basket, be less than 2 inches below the top of the backboard.

Free-throw shooters should also release the ball as high above the ground as possible, without adversely affecting the consistency of the shot; release the ball so it follows the imaginary line joining the player and the basket; and release the ball with a smooth body motion to get a consistent release speed.

“Our recommendations might make even the worst free-throw shooters – you know who you are, Shaquille O’Neal and Ben Wallace – break 60 percent from the free-throw line,” Silverberg says with tongue firmly in cheek. “A little bit of physics and a lot of practice can make everyone a better shooter from the free-throw line.”

The engineers used a men’s basketball for the study; it is heavier and a bit larger than basketballs used in women’s games. They also assumed that the basketball player doing the shooting was 6 feet 6 inches tall, and that he released the ball 6 inches above his head, so the “release height” was set to 7 feet. The free-throw line is 15 feet from the backboard, a cylinder-shaped opening that is 10 feet off the ground. Though it looks smaller, the diameter of a regulation basketball hoop is 18 inches; the diameter of a men’s basketball is a bit more than 9 inches.

Dr. Larry Silverberg, 919/515-5665 or lmsilver@ncsu.edu

Mick Kulikowski | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>