Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nothing But Net: The Physics of Free Throws

06.11.2009
Pay attention, Shaq: Two North Carolina State University engineers have figured out the best way to shoot a free throw – a frequently underappreciated skill that gets more important as the game clock winds down.

To get a swish rather than a brick, you need the best possible conditions for releasing the basketball from your hand, say Drs. Chau Tran and Larry Silverberg, mechanical and aerospace engineers at NC State and co-authors of a peer-reviewed study.

The engineers used hundreds of thousands of three-dimensional computer simulations of basketball free-throw trajectories to arrive at their conclusions. After running the simulations, Tran and Silverberg arrived at a number of major recommendations to improve free-throw shooting.

First, the engineers say that shooters should launch the shot with about three hertz of back spin. That translates to the ball making three complete backspinning revolutions before reaching the hoop. Back spin deadens the ball when it bounces off the rim or backboard, the engineers assert, giving the ball a better chance of settling through the net.

Where to aim? Tran and Silverberg say you should aim for the back of the rim, leaving close to 5 centimeters – about 2 inches – between the ball and the back of the rim. According to the simulations, aiming for the center of the basket decreases the probabilities of a successful shot by almost 3 percent.

The engineers say that the ball should be launched at 52 degrees to the horizontal. If you don’t have a protractor in your jersey, that means that the shot should, at the highest point in its arc to the basket, be less than 2 inches below the top of the backboard.

Free-throw shooters should also release the ball as high above the ground as possible, without adversely affecting the consistency of the shot; release the ball so it follows the imaginary line joining the player and the basket; and release the ball with a smooth body motion to get a consistent release speed.

“Our recommendations might make even the worst free-throw shooters – you know who you are, Shaquille O’Neal and Ben Wallace – break 60 percent from the free-throw line,” Silverberg says with tongue firmly in cheek. “A little bit of physics and a lot of practice can make everyone a better shooter from the free-throw line.”

The engineers used a men’s basketball for the study; it is heavier and a bit larger than basketballs used in women’s games. They also assumed that the basketball player doing the shooting was 6 feet 6 inches tall, and that he released the ball 6 inches above his head, so the “release height” was set to 7 feet. The free-throw line is 15 feet from the backboard, a cylinder-shaped opening that is 10 feet off the ground. Though it looks smaller, the diameter of a regulation basketball hoop is 18 inches; the diameter of a men’s basketball is a bit more than 9 inches.

Dr. Larry Silverberg, 919/515-5665 or lmsilver@ncsu.edu

Mick Kulikowski | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>