Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NERSC Supercomputing Center Breaks the Petaflops Barrier

17.11.2010
Fielding One of the World's Top Five Fastest Supercomputers
The Department of Energy's National Energy Research Scientific Computing Center (NERSC), already one of the world’s leading centers for scientific productivity, is now home to the fifth most powerful supercomputer in the world and the second most powerful in the United States, according to the latest edition of the TOP500 list, the definitive ranking of the world’s top computers.

NERSC's newest supercomputer, a 153,408 processor-core Cray XE6 system, posted a performance of 1.05 petaflops (quadrillions of calculations per second) running the Linpack benchmark. In keeping with NERSC's tradition of naming computers for renowned scientists, the system is named Hopper in honor of Admiral Grace Hopper, a pioneer in software development and programming languages. The system, installed d in September 2010, is funded by DOE’s Office of Advanced Scientific Computing Research.

Established in 1974, NERSC is located at Lawrence Berkeley National Laboratory in California and provides computing systems and services to more than 3,000 researchers supported by the Department of Energy (DOE). NERSC’s users, located at universities, national laboratories, and other research institutions around the country, report producing more than 1,500 scientific publications each year as a result of calculations run at NERSC.

"While we are elated to have entered the petascale performance arena, we are especially excited by the computational science potential offered by Hopper," said Kathy Yelick, Director of the NERSC Division and Associate Laboratory Director of Computing Sciences at Berkeley Lab. "We selected Cray as the system vendor after a competitive procurement based in large part on how proposed systems performed running our application benchmarks. Now that the system is installed and operational, we will begin our acceptance testing in which we run some of the most demanding scientific applications to ensure that Hopper will meet the day-to-day demands of our users."

NERSC serves one of the largest research communities of all supercomputing centers in the United States. The center's supercomputers are used to tackle a wide range of scientific challenges, including global climate change, combustion, clean energy, new materials, astrophysics, genomics, particle physics and chemistry. The more than 400 projects being addressed by NERSC users represent the research mission areas of DOE’s Office of Science.

The increasing power of supercomputers helps scientists study problems in greater detail and with greater accuracy, such as increasing the resolution of climate models and creating models of new materials with thousands of atoms. Supercomputers are increasingly used to compliment scientific experimentation by allowing researchers to test theories using computational models and analyzed large scientific data sets. NERSC is also home to Franklin, a 38,128 core Cray XT4 supercomputer with a Linpack performance of 266 teraflops (trillions of calculations per second). Franklin is ranked number 27 on the newest TOP500 list.

About NERSC and Berkeley Lab
The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the U.S. Department of Energy's Office of Science. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the DOE Office of Science.

Jon Bashor | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>