Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NERSC Supercomputing Center Breaks the Petaflops Barrier

17.11.2010
Fielding One of the World's Top Five Fastest Supercomputers
The Department of Energy's National Energy Research Scientific Computing Center (NERSC), already one of the world’s leading centers for scientific productivity, is now home to the fifth most powerful supercomputer in the world and the second most powerful in the United States, according to the latest edition of the TOP500 list, the definitive ranking of the world’s top computers.

NERSC's newest supercomputer, a 153,408 processor-core Cray XE6 system, posted a performance of 1.05 petaflops (quadrillions of calculations per second) running the Linpack benchmark. In keeping with NERSC's tradition of naming computers for renowned scientists, the system is named Hopper in honor of Admiral Grace Hopper, a pioneer in software development and programming languages. The system, installed d in September 2010, is funded by DOE’s Office of Advanced Scientific Computing Research.

Established in 1974, NERSC is located at Lawrence Berkeley National Laboratory in California and provides computing systems and services to more than 3,000 researchers supported by the Department of Energy (DOE). NERSC’s users, located at universities, national laboratories, and other research institutions around the country, report producing more than 1,500 scientific publications each year as a result of calculations run at NERSC.

"While we are elated to have entered the petascale performance arena, we are especially excited by the computational science potential offered by Hopper," said Kathy Yelick, Director of the NERSC Division and Associate Laboratory Director of Computing Sciences at Berkeley Lab. "We selected Cray as the system vendor after a competitive procurement based in large part on how proposed systems performed running our application benchmarks. Now that the system is installed and operational, we will begin our acceptance testing in which we run some of the most demanding scientific applications to ensure that Hopper will meet the day-to-day demands of our users."

NERSC serves one of the largest research communities of all supercomputing centers in the United States. The center's supercomputers are used to tackle a wide range of scientific challenges, including global climate change, combustion, clean energy, new materials, astrophysics, genomics, particle physics and chemistry. The more than 400 projects being addressed by NERSC users represent the research mission areas of DOE’s Office of Science.

The increasing power of supercomputers helps scientists study problems in greater detail and with greater accuracy, such as increasing the resolution of climate models and creating models of new materials with thousands of atoms. Supercomputers are increasingly used to compliment scientific experimentation by allowing researchers to test theories using computational models and analyzed large scientific data sets. NERSC is also home to Franklin, a 38,128 core Cray XT4 supercomputer with a Linpack performance of 266 teraflops (trillions of calculations per second). Franklin is ranked number 27 on the newest TOP500 list.

About NERSC and Berkeley Lab
The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the U.S. Department of Energy's Office of Science. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the DOE Office of Science.

Jon Bashor | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>