Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neighbors' Weird Orbits Can Make 'Habitable' Planets Not So Habitable

25.05.2010
Astronomers hunting for planets orbiting nearby stars similar to the sun are looking for signs of rocky, Earth-like planets in a "habitable" zone, where conditions such as temperature and liquid water remain stable enough to support life.

New findings from computer modeling indicate that some of those exoplanets might fluctuate between being habitable and being inhospitable to life because of the forces exerted by giant neighbors with eccentric orbits.

A lone Earth-like, or terrestrial, planet with a generally circular orbit toward the inner edge of its sun's habitable zone could be expected to remain within that zone, said Rory Barnes, a University of Washington postdoctoral researcher in astronomy. Adding a planet comparable to Jupiter to the system, however, and giving it a highly elliptical orbit – similar to most exoplanets discovered so far – can cause strange things to happen to the smaller planet, possibly causing it to cycle between habitable and uninhabitable conditions.

The smaller planet's orbit will elongate and then become more circular again, all in as little as 1,000 years, and could do so repeatedly. That raises the possibility, for example, that its average yearly temperature could change significantly during each millennium.

"For part of the time liquid water could exist on the surface, but at others it would boil off," said Barnes, who will present the findings Wednesday at a meeting of the American Astronomical Society in Miami.

The effect would be similar for an Earth-like planet at the outer edge of its habitable zone, except that its altered orbit likely would, at times, take it too far from its star, possibly resulting in planetary glaciation.

"The bigger issue here is that the habitable zone is very complicated," Barnes said. "Earth's climate is affected slightly over tens of thousands of years by the orbits of other planets in the solar system, but it is possible that in many exoplanetary systems the layout of the planets is very important to habitability."

The problem becomes even more complex for what could be habitable planets orbiting low-mass stars, perhaps one-third the mass of the sun. In such systems, the habitable zone is much closer to the smaller star, and tidal forces from the star's gravity are critical in determining whether the planet is habitable. Adding an eccentric orbit of a Jupiter-like planet could greatly alter conditions on the smaller planet as its orbit changes.

"There could be planets out there that have their geological properties change over very long timescales," Barnes said. "You can imagine planets that cycle in and out of intense volcanism and earthquake stages."

Tidal forces also fix the planet's rotation period, and as the orbit becomes more elongated the length of day can change significantly, Barnes said.

"The length of the day changes almost day to day," he said. "It's fascinating to think about how evolution occurs on such a world."

The work, funded by NASA's Virtual Planetary Laboratory, was conducted with Brian Jackson of NASA's Goddard Space Flight Center, Richard Greenberg of the University of Arizona and Sean Raymond of the Laboratoire d'Astrophysique de Bordeaux in France.

"There is this crazy zoo of planets out there that probably are habitable," Barnes said, "but their properties are very different from Earth and they're different from Earth because of their eccentric neighbors."

For more information, contact Barnes at 206-543-8979 or rory@astro.washington.edu.

NOTE: During the AAS meeting, Barnes can be reached by leaving a message at the AAS press room, 305-679-3276 or 3277.

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>