Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neighbors' Weird Orbits Can Make 'Habitable' Planets Not So Habitable

Astronomers hunting for planets orbiting nearby stars similar to the sun are looking for signs of rocky, Earth-like planets in a "habitable" zone, where conditions such as temperature and liquid water remain stable enough to support life.

New findings from computer modeling indicate that some of those exoplanets might fluctuate between being habitable and being inhospitable to life because of the forces exerted by giant neighbors with eccentric orbits.

A lone Earth-like, or terrestrial, planet with a generally circular orbit toward the inner edge of its sun's habitable zone could be expected to remain within that zone, said Rory Barnes, a University of Washington postdoctoral researcher in astronomy. Adding a planet comparable to Jupiter to the system, however, and giving it a highly elliptical orbit – similar to most exoplanets discovered so far – can cause strange things to happen to the smaller planet, possibly causing it to cycle between habitable and uninhabitable conditions.

The smaller planet's orbit will elongate and then become more circular again, all in as little as 1,000 years, and could do so repeatedly. That raises the possibility, for example, that its average yearly temperature could change significantly during each millennium.

"For part of the time liquid water could exist on the surface, but at others it would boil off," said Barnes, who will present the findings Wednesday at a meeting of the American Astronomical Society in Miami.

The effect would be similar for an Earth-like planet at the outer edge of its habitable zone, except that its altered orbit likely would, at times, take it too far from its star, possibly resulting in planetary glaciation.

"The bigger issue here is that the habitable zone is very complicated," Barnes said. "Earth's climate is affected slightly over tens of thousands of years by the orbits of other planets in the solar system, but it is possible that in many exoplanetary systems the layout of the planets is very important to habitability."

The problem becomes even more complex for what could be habitable planets orbiting low-mass stars, perhaps one-third the mass of the sun. In such systems, the habitable zone is much closer to the smaller star, and tidal forces from the star's gravity are critical in determining whether the planet is habitable. Adding an eccentric orbit of a Jupiter-like planet could greatly alter conditions on the smaller planet as its orbit changes.

"There could be planets out there that have their geological properties change over very long timescales," Barnes said. "You can imagine planets that cycle in and out of intense volcanism and earthquake stages."

Tidal forces also fix the planet's rotation period, and as the orbit becomes more elongated the length of day can change significantly, Barnes said.

"The length of the day changes almost day to day," he said. "It's fascinating to think about how evolution occurs on such a world."

The work, funded by NASA's Virtual Planetary Laboratory, was conducted with Brian Jackson of NASA's Goddard Space Flight Center, Richard Greenberg of the University of Arizona and Sean Raymond of the Laboratoire d'Astrophysique de Bordeaux in France.

"There is this crazy zoo of planets out there that probably are habitable," Barnes said, "but their properties are very different from Earth and they're different from Earth because of their eccentric neighbors."

For more information, contact Barnes at 206-543-8979 or

NOTE: During the AAS meeting, Barnes can be reached by leaving a message at the AAS press room, 305-679-3276 or 3277.

Vince Stricherz | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>