Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Researchers "Clear Away the Dust" To Get Better Look at Youngest Supernova Remnant

24.04.2009
Researchers at North Carolina State University have used a mathematical model that allows them to get a clearer picture of the galaxy's youngest supernova remnant by correcting for the distortions caused by cosmic dust.

Their new data provides evidence that this remnant is from a type Ia supernova - the explosion of a white dwarf star - and raises questions about the ways in which magnetic fields affect the generation of the remnant's cosmic ray particles.

NC State physicists Dr. Stephen Reynolds and Dr. Kazimierz Borkowski, with colleagues from Cambridge University and NASA, re-examined their original X-ray images of supernova remnant G1.9+0.3 in an attempt to glean more information about the remnant's origins, rate of expansion, and any cosmic particles that may have resulted from the explosion. Scientists know that supernovae create cosmic rays - fast-moving subatomic particles that play a role in the formation of stars - but they aren't sure how this occurs or what other functions the particles may serve.

"We knew the dust was a problem - it's why we never saw the original supernova light in Victorian times," Reynolds says. "Our high-powered orbiting telescopes use X-rays to take pictures of these objects, and the dust scatters these X-rays, so in order to get data that might be helpful to us, we first had to correct for the dust distortion."

A mathematical model allowed the scientists to deduce how many X-rays from each part of the remnant were scattered from another part. After this correction, they found that the "bright" and "dim" sides of the remnant had more and fewer of the highest-energy X-rays, respectively. Reynolds says that this pattern is best explained by a type Ia supernova, and that the difference in brightness corresponds to the level of synchrotronic X-rays present. Synchrotronic X-rays (like those produced by terrestrial synchrotron particle accelerators) are produced by high-energy cosmic particles, making this remnant one of the best examples of a cosmic ray accelerator that scientists have.

In addition, the location of the bright and dim sides point to the presence of a magnetic field that is affecting the remnant's acceleration process, and the distribution of cosmic rays.

The results were published in the April 20 edition of Astrophysical Journal Letters.

"We use supernovae as flashbulbs across the universe ( a means to make assumptions about how the universe works," Reynolds says. "Shockwaves from the explosions and the fast-moving cosmic particles that come from them play roles in galaxy formation. If we can figure out how these particles are energized, and how magnetic fields affect them, we'll be able to answer all sorts of questions about our universe."

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>