Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NAU researcher’s closer look at Mars reveals new type of impact crater

09.10.2013
Lessons from underground nuclear tests and explosive volcanoes may hold the answer to how a category of unusual impact craters formed on Mars.

The craters feature a thin-layered outer deposit that extends well beyond the typical range of ejecta, said Nadine Barlow, professor of physics and astronomy at Northern Arizona University.


A low-aspect-ratio layered ejecta crater on Mars.

She has given them a name—Low-Aspect-Ratio Layered Ejecta Craters—and presented the findings this week at the American Astronomical Society Division for Planetary Sciences in Denver.

Barlow found the LARLE craters while poring over high-resolution images to update her highly popular catalog of Martian craters.

“I had to ask, ‘What is going on here?’ “ Barlow said.

Delving into “explosion literature,” Barlow said she and her collaborators learned more about a phenomenon known as base surge. After a large explosion, fine-grain material forms a cloud and moves out along the surface. The cloud erodes the surface and picks up more material, creating an extensive outer deposit.

By adjusting equations from volcano research for Martian conditions, Barlow said, the researchers, including Joe Boyce, an NAU alum from the University of Hawaii, could accurately explain the “thin, sinuous, almost flame-like deposits.”

“So we think we’re on to something,” Barlow said.

The craters are found primarily at higher latitudes, a location that correlates with thick, fine-grained sedimentary deposits rich with subsurface ice. “The combination helps vaporize the materials and create a base flow surge,” Barlow said. The low aspect ratio refers to how thin the deposits are relative to the area they cover.

Barlow, Boyce and Lionel Wilson, of Lancaster University, relied on the stream of data that continues to flow from ongoing surveillance of Mars. Older data from the Mars Odyssey Orbiter was used for a global survey, but more detailed studies referred to high-resolution images from the Mars Reconnaissance Orbiter—about six meters per pixel.

“We’re looking in more detail at these deposits to find out what their characteristics are,” Barlow said. “We can see dune-like structures and the hollows that occur in the outer deposit.”

Barlow said she hopes to complete the revision of her catalog within a year, and welcomes surprises such as the LARLE finding along the way.

“That’s part of the fun of science, to see something and say, ‘Whoa, what’s that?’ ” she said. “Projects like this end up leading to proposals.”

Eric Dieterle | EurekAlert!
Further information:
http://www.nau.edu
http://news.nau.edu/nau-researchers-closer-look-mars-reveals-new-type-impact-crater/

More articles from Physics and Astronomy:

nachricht Gamma-ray flashes from plasma filaments
18.04.2018 | Max-Planck-Institut für Kernphysik

nachricht How does a molecule vibrate when you “touch” it?
17.04.2018 | Universität Regensburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>