Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NAU researcher’s closer look at Mars reveals new type of impact crater

09.10.2013
Lessons from underground nuclear tests and explosive volcanoes may hold the answer to how a category of unusual impact craters formed on Mars.

The craters feature a thin-layered outer deposit that extends well beyond the typical range of ejecta, said Nadine Barlow, professor of physics and astronomy at Northern Arizona University.


A low-aspect-ratio layered ejecta crater on Mars.

She has given them a name—Low-Aspect-Ratio Layered Ejecta Craters—and presented the findings this week at the American Astronomical Society Division for Planetary Sciences in Denver.

Barlow found the LARLE craters while poring over high-resolution images to update her highly popular catalog of Martian craters.

“I had to ask, ‘What is going on here?’ “ Barlow said.

Delving into “explosion literature,” Barlow said she and her collaborators learned more about a phenomenon known as base surge. After a large explosion, fine-grain material forms a cloud and moves out along the surface. The cloud erodes the surface and picks up more material, creating an extensive outer deposit.

By adjusting equations from volcano research for Martian conditions, Barlow said, the researchers, including Joe Boyce, an NAU alum from the University of Hawaii, could accurately explain the “thin, sinuous, almost flame-like deposits.”

“So we think we’re on to something,” Barlow said.

The craters are found primarily at higher latitudes, a location that correlates with thick, fine-grained sedimentary deposits rich with subsurface ice. “The combination helps vaporize the materials and create a base flow surge,” Barlow said. The low aspect ratio refers to how thin the deposits are relative to the area they cover.

Barlow, Boyce and Lionel Wilson, of Lancaster University, relied on the stream of data that continues to flow from ongoing surveillance of Mars. Older data from the Mars Odyssey Orbiter was used for a global survey, but more detailed studies referred to high-resolution images from the Mars Reconnaissance Orbiter—about six meters per pixel.

“We’re looking in more detail at these deposits to find out what their characteristics are,” Barlow said. “We can see dune-like structures and the hollows that occur in the outer deposit.”

Barlow said she hopes to complete the revision of her catalog within a year, and welcomes surprises such as the LARLE finding along the way.

“That’s part of the fun of science, to see something and say, ‘Whoa, what’s that?’ ” she said. “Projects like this end up leading to proposals.”

Eric Dieterle | EurekAlert!
Further information:
http://www.nau.edu
http://news.nau.edu/nau-researchers-closer-look-mars-reveals-new-type-impact-crater/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>