Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

National Synchrotron Light Source II Achieves 'First Light'

27.10.2014

The National Synchrotron Light Source II detects its first photons, beginning a new phase of the facility's operations. Scientific experiments at NSLS-II are expected to begin before the end of the year.

The brightest synchrotron light source in the world has delivered its first x-ray beams. The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory achieved "first light" on October 23, 2014, when operators opened the shutter to begin commissioning the first experimental station (called a beamline), allowing powerful x-rays to travel to a phosphor detector and capture the facility's first photons. While considerable work remains to realize the full potential of the new facility, first light counts as an important step on the road to facility commissioning.


Brookhaven National Laboratory

Inside the beamline enclosure at the National Synchrotron Light Source II (NSLS-II), a phosphor detector (the rectangle at right) captured the first x-rays (in white) which hit the mark dead center.

"This is a significant milestone for Brookhaven Lab, for the Department of Energy, and for the nation," said Harriet Kung, DOE Associate Director of Science for Basic Energy Sciences. "The National Synchrotron Light Source II will foster new discoveries and create breakthroughs in crucial areas of national need, including energy security and the environment. This new U.S. user facility will advance the Department's mission and play a leadership role in enabling and producing high-impact research for many years to come."

At 10:32 a.m. on October 23, a crowd of scientists, engineers, and technicians gathered around the Coherent Soft X-ray Scattering (CSX) beamline at NSLS-II, expectantly watching the video feed from inside a lead-lined hutch where the x-ray beam eventually struck the detector. As the x-rays hit the detector, cheers and applause rang out across the experimental hall for a milestone many years in the making.

"This achievement begins an exciting new chapter of synchrotron science at Brookhaven, building on the remarkable legacy of NSLS, and leading us in new directions we could not have imagined before," said Laboratory Director Doon Gibbs. "It's a great illustration of the ways that national labs continually evolve and grow to meet national needs, and it's a wonderful time for all of us. Everyone at the Lab, in every role, supports our science, so we can all share in the sense of excitement and take pride in this accomplishment."

In the heart of the 590,000 square foot facility, an electron gun emits packets of the negatively charged particles, which travel down a linear accelerator into a booster ring. There, the electrons are brought to nearly the speed of light, and then steered into the storage ring, where powerful magnets guide the beam on a half-mile circuit around the NSLS-II storage ring.

As the electrons travel around the ring, they emit extremely intense x-rays, which are delivered and guided down beamlines into experimental end stations where scientists will carry out experiments for scientific research and discovery. NSLS-II accelerator operators have previously stored beam in the storage ring, but they hadn't yet opened the shutters to allow x-ray light to reach a detector until today's celebrated achievement.

"We have been eagerly anticipating this culmination of nearly a decade of design, construction, and testing and the sustained effort and dedication of hundreds of individuals who made it possible," said Steve Dierker, Associate Laboratory Director for Photon Sciences. 'We have more work to do, but soon researchers from around the world will start using NSLS-II to advance their research on everything from new energy storage materials to developing new drugs to fight disease. I'm very much looking forward to the discoveries that NSLS-II will enable, and to the continuing legacy of groundbreaking synchrotron research at Brookhaven."

NSLS-II, a third-generation synchrotron light source, will be the newest and most advanced synchrotron facility in the world, enabling research not possible anywhere else. As a DOE Office of Science User Facility, it will offer researchers from academia, industry, and national laboratories new ways to study material properties and functions with nanoscale resolution and exquisite sensitivity by providing state-of-the-art capabilities for x-ray imaging, scattering, and spectroscopy.

Currently 30 beamlines are under development to take advantage of the high brightness of the x-rays at NSLS-II. Commissioning of the first group of seven beamlines will begin in the coming months, with first experiments beginning at the CSX beamline before the end of 2014.

At the NSLS-II beamlines, scientists will be able to generate images of the structure of materials such as lithium-ion batteries or biological proteins at the nanoscale level—research expected to advance many fields of science and impact people's quality of life in the years to come.

NSLS-II will support the Department of Energy's scientific mission by providing the most advanced tools for discovery-class science in condensed matter and materials science, physics, chemistry, and biology—science that ultimately will enhance national and energy security and help drive abundant, safe, and clean energy technologies.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Contact Information

Media Contacts:
Karen McNulty Walsh, 631 344-8350 or kmcnulty@bnl.gov
Chelsea Whyte, 631 344-8671 or cwhyte@bnl.gov

Chelsea Whyte
Public Affairs Representative
cwhyte@bnl.gov
Phone: 6313448671

Karen McNulty Walsh | newswise

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>