Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Webb Telescope mirrors installed with robotic arm precision


Inside a massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland the James Webb Space Telescope team is steadily installing the largest space telescope mirror ever. Unlike other space telescope mirrors, this one must be pieced together from segments using a high-precision robotic arm.

The team uses a robotic arm called the Primary Mirror Alignment and Integration Fixture to lift and lower each of Webb's 18 primary flight mirror segments to their locations on the telescope structure. Each of the mirrors is made with beryllium, chosen for its properties to withstand the super cold temperatures of space. Each segment also has a thin gold coating to reflect infrared light. These mirror segments will function as one when the telescope is in orbit.

A robotic arm called the Primary Mirror Alignment and Integration Fixture is used to lift and lower each of Webb's 18 primary flight mirror segments to their locations on the telescope structure.

Credit: NASA/Chris Gunn

"In order for the combination of mirror segments to function as a single mirror they must be placed within a few millimeters of one another, to fraction-of-a-millimeter accuracy. A human operator cannot place the mirrors that accurately, so we developed a robotic system to do the assembly," said NASA's James Webb Space Telescope Program Director Eric Smith, at Headquarters in Washington.

To precisely install the segments, the robotic arm can move in six directions to maneuver over the telescope structure. While one team of engineers maneuvers the robotic arm, another team of engineers simultaneously takes measurements with lasers to ensure each mirror segment is placed, bolted and glued perfectly before moving to the next.

"While the team is installing the mirrors there are references on the structure and the mirrors that allow the team to understand where the final mirror surface is located," said Harris Corporation's James Webb Space Telescope's Assembly Integration and Test Director Gary Matthews Greenbelt, Maryland.

The team uses reference points on the telescope structure called Spherically Mounted Retroreflectors to accomplish this feat. A laser tracker, similar to the ones used by surveyors, looks at those reference points and can determine where the mirror segments go.

"Instead of using a measuring tape, a laser is used to measure distance very precisely," said Matthews. "Based off of those measurements a coordinate system is used to place each of the primary mirror segments. The engineers can move the mirror into its precise location on the telescope structure to within the thickness of a piece of paper."

Harris Corporation engineers are helping build NASA's ultra-powerful James Webb Space Telescope. Harris is responsible for integrating components made by various members of the team to form the optical telescope element, which is the portion of the telescope that will collect light and provide sharp images of deep space.

The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency.

For more information about NASA's Webb telescope, visit: or

Rob Gutro | EurekAlert!

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>