Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Webb Telescope mirrors installed with robotic arm precision

28.01.2016

Inside a massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland the James Webb Space Telescope team is steadily installing the largest space telescope mirror ever. Unlike other space telescope mirrors, this one must be pieced together from segments using a high-precision robotic arm.

The team uses a robotic arm called the Primary Mirror Alignment and Integration Fixture to lift and lower each of Webb's 18 primary flight mirror segments to their locations on the telescope structure. Each of the mirrors is made with beryllium, chosen for its properties to withstand the super cold temperatures of space. Each segment also has a thin gold coating to reflect infrared light. These mirror segments will function as one when the telescope is in orbit.


A robotic arm called the Primary Mirror Alignment and Integration Fixture is used to lift and lower each of Webb's 18 primary flight mirror segments to their locations on the telescope structure.

Credit: NASA/Chris Gunn

"In order for the combination of mirror segments to function as a single mirror they must be placed within a few millimeters of one another, to fraction-of-a-millimeter accuracy. A human operator cannot place the mirrors that accurately, so we developed a robotic system to do the assembly," said NASA's James Webb Space Telescope Program Director Eric Smith, at Headquarters in Washington.

To precisely install the segments, the robotic arm can move in six directions to maneuver over the telescope structure. While one team of engineers maneuvers the robotic arm, another team of engineers simultaneously takes measurements with lasers to ensure each mirror segment is placed, bolted and glued perfectly before moving to the next.

"While the team is installing the mirrors there are references on the structure and the mirrors that allow the team to understand where the final mirror surface is located," said Harris Corporation's James Webb Space Telescope's Assembly Integration and Test Director Gary Matthews Greenbelt, Maryland.

The team uses reference points on the telescope structure called Spherically Mounted Retroreflectors to accomplish this feat. A laser tracker, similar to the ones used by surveyors, looks at those reference points and can determine where the mirror segments go.

"Instead of using a measuring tape, a laser is used to measure distance very precisely," said Matthews. "Based off of those measurements a coordinate system is used to place each of the primary mirror segments. The engineers can move the mirror into its precise location on the telescope structure to within the thickness of a piece of paper."

Harris Corporation engineers are helping build NASA's ultra-powerful James Webb Space Telescope. Harris is responsible for integrating components made by various members of the team to form the optical telescope element, which is the portion of the telescope that will collect light and provide sharp images of deep space.

The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency.

For more information about NASA's Webb telescope, visit:http://www.nasa.gov/webb or jwst.nasa.gov

Rob Gutro | EurekAlert!

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>