Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA unveils latest results from lunar mission, helps prepare for next stage of scientific discovery

17.12.2009
NASA's current mission in orbit around the moon, the Lunar Reconnaissance Orbiter, or LRO, has been providing crucial insights about our nearest celestial neighbor since its launch in June. At a scientific meeting today, researchers unveiled the latest findings from three instruments of the powerful suite of seven aboard the satellite. LRO is expected to return more data about the moon than all previous orbital missions combined.

At the American Geophysical Union meeting in San Francisco, scientists discussed the latest findings from the LRO Camera, or LROC, the Cosmic Ray Telescope for the Effects of Radiation, or CRaTER, and the Diviner Lunar Radiometer Experiment. Each instrument is returning surprising data and helping scientists map the moon in incredible detail and understand the lunar environment.

LROC has now mapped in high resolution all the Apollo landing sites and 50 sites that were identified by NASA's Constellation Program to be representative of the wide range of terrains present on the moon.

"From a practical, scientific standpoint, the Apollo landing sites have served as a fantastic source of calibration for the LROC Narrow Angle Cameras," said Mark Robinson, LROC principal investigator at Arizona State University in Tempe. "Since the locations of some of the hardware left by the astronauts are known to about nine feet absolute accuracy, we can tie the Narrow Angle Camera geometric and timing calibration to the coordinates of the Apollo Laser Ranging Retroreflectors and Apollo Lunar Surface Experiments Packages. This ground truth enables more accurate coordinates to be derived for virtually anywhere on the moon. Scientists are currently analyzing brightness differences of the surface material stirred up by the Apollo astronauts, comparing them with the local surroundings to estimate physical properties of the surface material. Such analyses will provide critical information for interpreting remote sensing data from LRO, as well as from India's Chandrayaan-1, and Japan's Kaguya missions."

Robinson added, "The 50 Constellation sites have been imaged to some extent at meter or better spatial resolution by the LROC Cameras." The globally distributed sites were chosen to provide Constellation project engineers with a range of lunar surface characteristics that they might encounter. Robinson said, "The high-resolution images reveal a moon whose surface is geologically complex, scientifically compelling, and far more varied than one might expect on the basis of the limited number of landing sites from previous missions."

LRO's Diviner instrument has discovered that the bottoms of polar craters in permanent shadow can be brutally cold. Mid-winter nighttime surface temperatures inside the coldest craters in the north polar region dip down to 26 Kelvin (416 below zero Fahrenheit, or minus 249 degrees Celsius). "These are the coldest temperatures that have been measured thus far anywhere in the solar system," said David Paige, Diviner principal investigator at the University of California, Los Angeles. "These regions are cold enough to trap a wide range of compounds such as water, carbon dioxide, and organic molecules. There could be all kinds of interesting compounds trapped there."

LRO's CRaTER instrument is measuring the amount of space radiation at the moon to help determine the level of protection required for astronauts during lengthy expeditions on the moon or to other solar system destinations. "This surprising solar minimum, or quiet period for the sun regarding magnetic activity, has led to the highest level of space radiation in the form of Galactic Cosmic Rays, or GCRs, fluxes and dose rates during the era of human space exploration," said Harlan Spence, CRaTER principal investigator of Boston University and the University of New Hampshire, Durham. "The rarest events – cosmic rays with enough energy to punch through the whole telescope – are seen once per second, nearly twice higher than anticipated. CRaTER radiation measurements taken during this unique, worst-case solar minimum will help us design safe shelters for astronauts."

GCRs are electrically charged particles – electrons and atomic nuclei – moving at nearly the speed of light into the solar system. Magnetic fields carried by the solar wind deflect many GCRs before they approach the inner solar system. However, the sun is in an unusually long and deep quiet period, and the interplanetary magnetic fields and solar wind pressures are the lowest yet measured, allowing an unprecedented influx of GCRs.

Scientists expected the level of GCRs to drop as LRO got closer to the moon for its mapping orbit. This is because GCRs come from all directions in deep space, but the moon acts as a shield, blocking the particles behind it across about half the sky in close lunar proximity. However, the rate did not drop as much as expected. "This is likely due to interactions between the Galactic Cosmic Rays and the lunar surface," said Spence. "The primary GCRs produce secondary radiation by shattering atoms in the lunar surface material; the lunar surface then becomes a significant secondary source of particles, and the resulting radiation dose is thereby 30-40 percent higher than expected."

Cosmic rays also originate closer to home, from stormy magnetic activity on the sun. The sun goes through a cycle of activity, approximately 11 years long, from quiet to stormy and back again. During stormy periods, events like solar flares, magnetic explosions in the sun's atmosphere, propel charged particles to high speeds. "We're eager to see a big solar flare, so we can evaluate the hazards from solar-generated cosmic rays, but we'll probably have to wait a couple years until the sun wakes up," said Spence.

Andy Freeberg | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/lro

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>