Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA unveils latest results from lunar mission, helps prepare for next stage of scientific discovery

NASA's current mission in orbit around the moon, the Lunar Reconnaissance Orbiter, or LRO, has been providing crucial insights about our nearest celestial neighbor since its launch in June. At a scientific meeting today, researchers unveiled the latest findings from three instruments of the powerful suite of seven aboard the satellite. LRO is expected to return more data about the moon than all previous orbital missions combined.

At the American Geophysical Union meeting in San Francisco, scientists discussed the latest findings from the LRO Camera, or LROC, the Cosmic Ray Telescope for the Effects of Radiation, or CRaTER, and the Diviner Lunar Radiometer Experiment. Each instrument is returning surprising data and helping scientists map the moon in incredible detail and understand the lunar environment.

LROC has now mapped in high resolution all the Apollo landing sites and 50 sites that were identified by NASA's Constellation Program to be representative of the wide range of terrains present on the moon.

"From a practical, scientific standpoint, the Apollo landing sites have served as a fantastic source of calibration for the LROC Narrow Angle Cameras," said Mark Robinson, LROC principal investigator at Arizona State University in Tempe. "Since the locations of some of the hardware left by the astronauts are known to about nine feet absolute accuracy, we can tie the Narrow Angle Camera geometric and timing calibration to the coordinates of the Apollo Laser Ranging Retroreflectors and Apollo Lunar Surface Experiments Packages. This ground truth enables more accurate coordinates to be derived for virtually anywhere on the moon. Scientists are currently analyzing brightness differences of the surface material stirred up by the Apollo astronauts, comparing them with the local surroundings to estimate physical properties of the surface material. Such analyses will provide critical information for interpreting remote sensing data from LRO, as well as from India's Chandrayaan-1, and Japan's Kaguya missions."

Robinson added, "The 50 Constellation sites have been imaged to some extent at meter or better spatial resolution by the LROC Cameras." The globally distributed sites were chosen to provide Constellation project engineers with a range of lunar surface characteristics that they might encounter. Robinson said, "The high-resolution images reveal a moon whose surface is geologically complex, scientifically compelling, and far more varied than one might expect on the basis of the limited number of landing sites from previous missions."

LRO's Diviner instrument has discovered that the bottoms of polar craters in permanent shadow can be brutally cold. Mid-winter nighttime surface temperatures inside the coldest craters in the north polar region dip down to 26 Kelvin (416 below zero Fahrenheit, or minus 249 degrees Celsius). "These are the coldest temperatures that have been measured thus far anywhere in the solar system," said David Paige, Diviner principal investigator at the University of California, Los Angeles. "These regions are cold enough to trap a wide range of compounds such as water, carbon dioxide, and organic molecules. There could be all kinds of interesting compounds trapped there."

LRO's CRaTER instrument is measuring the amount of space radiation at the moon to help determine the level of protection required for astronauts during lengthy expeditions on the moon or to other solar system destinations. "This surprising solar minimum, or quiet period for the sun regarding magnetic activity, has led to the highest level of space radiation in the form of Galactic Cosmic Rays, or GCRs, fluxes and dose rates during the era of human space exploration," said Harlan Spence, CRaTER principal investigator of Boston University and the University of New Hampshire, Durham. "The rarest events – cosmic rays with enough energy to punch through the whole telescope – are seen once per second, nearly twice higher than anticipated. CRaTER radiation measurements taken during this unique, worst-case solar minimum will help us design safe shelters for astronauts."

GCRs are electrically charged particles – electrons and atomic nuclei – moving at nearly the speed of light into the solar system. Magnetic fields carried by the solar wind deflect many GCRs before they approach the inner solar system. However, the sun is in an unusually long and deep quiet period, and the interplanetary magnetic fields and solar wind pressures are the lowest yet measured, allowing an unprecedented influx of GCRs.

Scientists expected the level of GCRs to drop as LRO got closer to the moon for its mapping orbit. This is because GCRs come from all directions in deep space, but the moon acts as a shield, blocking the particles behind it across about half the sky in close lunar proximity. However, the rate did not drop as much as expected. "This is likely due to interactions between the Galactic Cosmic Rays and the lunar surface," said Spence. "The primary GCRs produce secondary radiation by shattering atoms in the lunar surface material; the lunar surface then becomes a significant secondary source of particles, and the resulting radiation dose is thereby 30-40 percent higher than expected."

Cosmic rays also originate closer to home, from stormy magnetic activity on the sun. The sun goes through a cycle of activity, approximately 11 years long, from quiet to stormy and back again. During stormy periods, events like solar flares, magnetic explosions in the sun's atmosphere, propel charged particles to high speeds. "We're eager to see a big solar flare, so we can evaluate the hazards from solar-generated cosmic rays, but we'll probably have to wait a couple years until the sun wakes up," said Spence.

Andy Freeberg | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>