Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA is Tracking Electron Beams from the Sun

In the quest to understand how the world's weather moves around the globe, scientists have had to tease apart different kinds of atmospheric movement, such as the great jet streams that can move across a whole hemisphere versus more intricate, localized flows.

Much the same must currently be done to understand the various motions at work in the great space weather system that links the sun and Earth as the sun shoots material out in all directions, creating its own version of a particle sea to fill up the solar system.

NASA's Advanced Composition Explorer (ACE) observes a wide array of particles that flow toward Earth from the sun to better understand the great space weather system that connects the sun to our planet. Credit: NASA/H. Zell

"People think of the sun as giving out light and heat," says Ruth Skoug, a space scientist at Los Alamos National Laboratory in Los Alamos, N.M. "But it is also always losing particles, losing mass."

For example, the sun sends out a steady outflow of solar particles called the solar wind and additionally giant, sudden explosions of material called coronal mass ejections or CMEs erupt out into space. Skoug studies a third kind of particle flow: jets of high-energy electrons streaming from the sun known as electron strahl. Through a new five-year study of observations of the strahl, Skoug and her colleagues have researched another piece of this giant space weather puzzle around Earth.

Skoug says that each fast-moving electron is by and large constrained to move along magnetic field lines that flow out from the sun, some of which loop back to touch the sun again, others which extend out to the edges of the solar system. The charge on an electron interacts with the field lines such that each particle sticks close to the line, somewhat like a bead on an abacus – with the added motion that the electron gyrates in circles around the field lines at the same time.

In general, the magnetic fields get weaker further away from the sun. A physical law that applies in those cases in which electrons are not pushed off course, or “scattered,” demands that the electron gyrations get smaller and more stretched out along the field line. If this were the only physics at work, therefore, one would expect the strahl to become a more and more focused, pencil-thin beam when measured near Earth. This measurement is done by NASA's Advanced Composition Explorer (ACE) mission, but it shows that the expected focusing doesn’t quite happen.

"Wherever we look, the electron strahl is much wider than we would have expected," says Eric Christian, the NASA's deputy project scientist for ACE at NASA Goddard Space Flight Center in Greenbelt, Md. "So there must be some process that helps scatter the electrons into a wider beam."

Indeed, the strahls come in a wide variety of sizes, so Skoug and her colleagues sifted through five years worth of ACE data to see if they could find any patterns. While they spotted strahls of all widths, they did find that certain sizes showed up more frequently. They also found that strahls along open field lines, those that do not return to the sun, have different characteristics than those on closed field lines, those that do return to the sun. On the open field lines, the most common width by far is about ten times the size of the thin beam of electrons expected if there had been no extra scattering. The closed field lines, however, showed a nearly equal number of strahls at that width and at a width some four times even larger.

The strahls on the closed field lines showed an additional pattern. While the strahls might differ in width, they did not tend to differ in the total number of electrons passing by. This suggests that the different shaped strahls – which often come from similar places on the sun -- may have been the same in composition when they left the sun, but were altered by the path they traveled and scattering they encountered along their journey.

While each piece of statistical information like this may seem slightly esoteric, together they help constrain what kinds of scattering might be at work in space.

"We don't yet know how the electrons get scattered into these different widths," says Skoug. "The electrons are so spread out that they rarely bump into each other to get pushed off course, so instead we think that electromagnetic waves add energy, and therefore speed, to the particles."

There are numerous types of these waves, however, traveling at different speeds, in different sizes and in different directions, and no one yet knows which kinds of waves might be at work. Research like this helps start the process of eliminating certain scattering options, since the correct version must, of course, cause the specific variations seen by Skoug and her colleagues.

For more information about NASA's ACE mission, visit:
Karen C. Fox
NASA Goddard Space Flight Center, Greenbelt, MD

Susan Hendrix | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>