Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Telescopes Join Forces to Observe Unprecedented Explosion

08.04.2011
NASA's Swift satellite, Hubble Space Telescope, and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts ever observed.

More than a week later, high-energy radiation continues to brighten and fade from its location.

Astronomers say they have never seen such a bright, variable, high-energy, long-lasting burst before. Usually, gamma-ray bursts mark the destruction of a massive star, and flaring emission from these events never lasts more than a few hours.

Although research is ongoing, astronomers feel that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream

toward the hole. According to this model, the spinning black hole formed an outflowing jet along its rotational axis. A powerful blast of X-rays and gamma rays is seen when this jet is pointed in our direction.

On March 28, 2011 Swift's Burst Alert Telescope discovered the source in the constellation Draco when it erupted with the first in a series of powerful blasts.

"We know of objects in our own galaxy that can produce repeated bursts, but they are thousands to millions of times less powerful than the bursts we are seeing now. This is truly extraordinary," said Andrew Fruchter at the Space Telescope Science Institute in Baltimore.

Swift determined a position for the explosion, which is now cataloged as gamma-ray burst (GRB) 110328A, and informed astronomers worldwide.

As dozens of telescopes turned to the spot, astronomers quickly noticed a small, distant galaxy very near the Swift position. A deep image taken by Hubble on Monday, April 4, pinpointed the source of the explosion at the center of this galaxy, which lies 3.8 billion light-years away from Earth. That same day, astronomers used NASA's Chandra X-ray Observatory to make a four-hour-long exposure of the puzzling source. The image, which locates the X-ray object 10 times more precisely than Swift, shows it lies at the center of the galaxy Hubble imaged.

"We have been eagerly awaiting the Hubble observation," said Neil Gehrels, the lead scientist for Swift at NASA's Goddard Space Flight Center in Greenbelt, Md. "The fact that the explosion occurred in the center of a galaxy tells us it is most likely associated with a massive black hole. This solves a key question about the mysterious event."

Most galaxies, including our own, contain central black holes with millions of times the Sun's mass; those in the largest galaxies can be a thousand times larger. The disrupted star probably succumbed to a black hole less massive than the Milky Way's, which has a mass four million times that of our Sun.

Astronomers previously have detected stars disrupted by supermassive black holes, but none have shown the X-ray brightness and variability seen in GRB 110328A. The source has undergone numerous flares. Since April 3, for example, the source has brightened by more than five times.

Scientists think that the X-rays may be coming from matter moving near the speed of light in a particle jet that forms along the rotation axis of the spinning black hole as the star's gas falls into a disk around the black hole.

"The best explanation at the moment is that we happen to be looking down the barrel of this jet," said Andrew Levan of the University of Warwick in the United Kingdom, who led the Chandra observations. "When we look straight down these jets, a brightness boost lets us view details we might otherwise miss."

This brightness increase, which is called relativistic beaming, occurs when matter moving close to the speed of light is viewed nearly head on. Astronomers plan additional Hubble observations to see if the galaxy's core changes brightness.

Goddard manages Swift and Hubble. NASA's Marshall Space Flight Center in Huntsville, Ala., manages Chandra. Hubble was built and is operated in partnership with the European Space Agency. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. Science operations for all three missions include contributions from many national and international partners. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc.

For more information and images associated with this release, please visit:

http://hubblesite.org/news/2011/10
http://www.nasa.gov/topics/universe/features/star-disintegration.html
http:/www.chandra.harvard.edu/
Trent Perrotto
Headquarters, Washington
202-358-0321
trent.j.perrotto@nasa.gov
Lynn Chandler
NASA Goddard Space Flight Center, Greenbelt, Md.
301-286-2806
lynn.chandler-1@nasa.gov
Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu
Megan Watzke
Chandra X-ray Center, Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
RELEASE: STScI-PR11-10

Ray Villard | Newswise Science News
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>