Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Telescopes Find Clear Skies and Water Vapor on Exo-Neptune


Astronomers using data from three of NASA's space telescopes -- Hubble, Spitzer, and Kepler -- have discovered clear skies and steamy water vapor on a gaseous planet outside our solar system. The planet is about the size of Neptune, making it the smallest for which molecules of any kind have been detected.

"The discovery is a significant milepost on the road to eventually analyzing the atmospheric composition of smaller, rocky planets more like Earth," said John Grunsfeld, assistant administrator of NASA's Science Mission Directorate in Washington. "Such achievements are only possible today with the combined capabilities of these unique and powerful observatories."

Illustration Credit: NASA, ESA, and R. Hurt (JPL-Caltech)

A Sunny Outlook for 'Weather' on Exoplanets. Scientists were excited to discover clear skies on a relatively small planet, about the size of Neptune, using the combined power of NASA's Hubble, Spitzer, and Kepler space telescopes. The view from this planet -- were it possible to fly a spaceship into its gaseous layers -- is illustrated at right. Before now, all of the planets observed in this size range had been found to have high cloud layers that blocked the ability to detect molecules in the planet's atmosphere (illustrated at left). The clear planet, called HAT-P-11b, is gaseous with a rocky core, much like our own Neptune. Its atmosphere may have clouds deeper down, but the new observations show that the upper region is cloud-free. This good visibility enabled scientists to detect water vapor molecules in the planet's atmosphere.

Clouds in the atmospheres of planets can block the view to underlying molecules that reveal information about the planets' compositions and histories. Finding clear skies on a Neptune-size planet is a good sign that smaller planets might have similarly good visibility.

"When astronomers go observing at night with telescopes, they say 'clear skies' to mean good luck," said Jonathan Fraine of the University of Maryland, College Park, lead author of a new study appearing in Nature. "In this case, we found clear skies on a distant planet. That's lucky for us because it means clouds didn't block our view of water molecules."

The planet, HAT-P-11b, is a so-called exo-Neptune -- a Neptune-size planet that orbits another star. It is located 120 light-years away in the constellation Cygnus. Unlike our Neptune, this planet orbits closer to its star, making one lap roughly every five days. It is a warm world thought to have a rocky core and gaseous atmosphere. Not much else was known about the composition of the planet,or other exo-Neptunes like it, until now.

Part of the challenge in analyzing the atmospheres of planets like this is their size. Larger, Jupiter-like planets are easier to see because of their impressive girth and relatively puffy atmospheres. In fact, researchers have already been able to detect water vapor in those planets. Smaller planets are more difficult to probe, and what's more, the ones observed to date all appeared to be cloudy.

In the new study, astronomers set out to look at the atmosphere of HAT-P-11b, not knowing if its weather would call for clouds or not. They used Hubble's Wide Field Camera 3, and a technique called transmission spectroscopy, in which a planet is observed as it crosses in front of its parent star. Starlight filters through the rim of the planet's atmosphere and into a telescope's lens. If molecules like water vapor are present, they absorb some of the starlight, leaving distinct signatures in the light that reaches our telescopes.

Using this strategy, Hubble was able to detect water vapor in HAT-P-11b. This technique indicates the planet did not have clouds blocking the view, a hopeful sign that more cloudless planets can be located and analyzed in the future.

But before the team could celebrate clear skies on the exo-Neptune, they had to show that starspots -- cooler "freckles" on the face of stars -- were not the real sources of water vapor. Cool starspots on the parent star can contain water vapor that might appear erroneously to be from the planet. That's when the team turned to Kepler and Spitzer. Kepler had been observing one patch of sky for years, and HAT-P-11b happens to lie in the field. Those visible-light data were combined with targeted Spitzer observations taken at infrared wavelengths. By comparing these observations, the astronomers figured out that the starspots were too hot to have any steam.

It was at that point the team could celebrate detecting water vapor on a world unlike any in our solar system. "We think that exo-Neptunes may have diverse compositions, which reflect their formation histories," said Heather Knutson of the California Institute of Technology, Pasadena, co-author of the new study. "Now with data like these, we can begin to piece together a narrative for the origin of these distant worlds."

The results from all three telescopes demonstrate that HAT-P-11b is blanketed in water vapor, hydrogen gas, and likely other yet-to-be-identified molecules. Theorists will be drawing up new models to explain the planet's makeup and origins.

"We are working our way down the line, from hot Jupiters to exo-Neptunes," said Drake Deming, a co-author of the study also from University of Maryland, College Park. "We want to expand our knowledge to a diverse range of exoplanets."

The astronomers plan to examine more exo-Neptunes in the future, and hope to apply the same method to smaller super-Earths -- the massive, rocky cousins to our home world with up to 10 times the mass. Our solar system doesn't have a super-Earth, but NASA's Kepler mission is finding them around other stars in droves. NASA's James Webb Space Telescope, scheduled to launch in 2018, will search super-Earths for signs of water vapor and other molecules; however, finding signs of oceans and potentially habitable worlds is likely a ways off.

"The work we are doing now is important for future studies of super-Earths and even smaller planets, because we want to be able to pick out in advance the planets with clear atmospheres that will let us detect molecules," said Knutson.

Once again, astronomers will be crossing their fingers for clear skies.

More information about this study, Hubble, Kepler and Spitzer is online at:

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

Contact Information

Ray Villard
News Chief
Phone: 410-338-4514

Ray Villard | newswise

Further reports about: Atmosphere Hubble Kepler NASA STScI Skies Space Telescope Telescope Telescopes Water clouds water vapor

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>