Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Telescopes Discover Strobe-Like Flashes in a Suspected Binary Protostar

11.02.2013
Two of NASA's great observatories, the Spitzer and Hubble space telescopes, have teamed up to uncover a mysterious infant star that behaves like a strobe light.

Every 25.34 days, the object, designated LRLL 54361, unleashes a burst of light. Although a similar phenomenon has been observed in two other young stellar objects, this is the most powerful such beacon seen to date.


Credit: NASA, ESA, J. Muzerolle (STScI), E. Furlan (NOAO and Caltech), K. Flaherty (Univ. of Arizona/Steward Observ.), Z. Balog (Max Planck Inst. for Astronomy), and R. Gutermuth (Univ. of Massachusetts, Amherst) Acknowledgment: R. Hurt (Caltech/Spitze

PROTOSTAR LRLL 54361 -- NASA's Spitzer and Hubble space telescopes have teamed up to uncover a mysterious infant star that behaves like a police strobe light. [Left] -- This is a false-color, infrared-light Spitzer image of LRLL 54361 inside the star-forming region IC 348 located 950 light-years away. The Spitzer Space Telescope discovered an unusual variable object that has the typical signature of a protostar. The object emits a burst of light every 25.34 days. [Center] -- This Hubble Space Telescope monochromatic-color image resolves the detailed structure around the protostar, consisting of two cavities that are traced by light scattered off their edges above and below a dusty disk. The cavities were likely blown out of the surrounding natal envelope of dust and gas by an outflow launched near the central object. [Right] -- This is an artist's impression of the hypothesized central object that may be two young binary stars. Astronomers propose that the flashes are due to material in a circumstellar disk suddenly being dumped onto the growing stars and unleashing a blast of radiation each time the stars get close to each other in their orbit.

The heart of the fireworks is hidden behind a dense disk and envelope of dust. Astronomers propose the light flashes are caused by periodic interactions between two newly formed stars that are binary, or gravitationally bound to each other. LRLL 54361 offers insights into the early stages of star formation when lots of gas and dust is being rapidly accreted, or pulled together, to form a new binary star.

Astronomers theorize the flashes are caused by material suddenly being dumped onto the growing stars, known as protostars. A blast of radiation is unleashed each time the stars get close to each other in their orbits. This phenomenon, called pulsed accretion, has been seen in later stages of star birth, but never in such a young system or with such intensity and regularity.

"This protostar has such large brightness variations with a precise period that is very difficult to explain," said James Muzerolle of the Space Telescope Science Institute in Baltimore, Md. His paper recently was published in the science journal Nature.

Discovered by NASA's Spitzer Space Telescope, LRLL 54361 is a variable object inside the star-forming region IC 348, located 950 light-years from Earth. Data from Spitzer revealed the presence of protostars. Based on statistical analysis, the two stars are estimated to be no more than a few hundred thousand years old.

The Spitzer infrared data, collected repeatedly during a period of seven years, showed unusual outbursts in the brightness of the suspected binary protostar. Surprisingly, the outbursts recurred every 25.34 days, which is a very rare phenomenon.

Astronomers used NASA's Hubble Space Telescope to confirm the Spitzer observations and reveal the detailed stellar structure around LRLL 54361. Hubble observed two cavities above and below a dusty disk. The cavities are visible by tracing light scattered off their edges. They likely were blown out of the surrounding natal envelope of dust and gas by an outflow launched near the central stars. The disk and the envelope prevent the suspected binary star pair from being observed directly. By capturing multiple images over the course of one pulse event, the Hubble observations uncovered a spectacular movement of light away from the center of the system, an optical illusion known as a light echo.

Muzerolle and his team hypothesized the pair of stars in the center of the dust cloud move around each other in a very eccentric orbit. As the stars approach each other, dust and gas are dragged from the inner edge of a surrounding disk. The material ultimately crashes onto one or both stars, which triggers a flash of light that illuminates the circumstellar dust. The system is rare because close binaries account for only a few percent of our galaxy's stellar population. This is likely a brief, transitory phase in the birth of a star system. "Assuming the pulsed accretion hypothesis is correct, the disk is circumbinary, which means it encircles both stars. There may be small circumstellar disks around each star, though that is perhaps less likely given the strong pulse signature," said Muzerolle.

Muzerolle's team next plans to continue monitoring LRLL 54361 using other facilities including the European Space Agency's Herschel Space Telescope. The team hopes to eventually obtain more direct measurements of the binary star and its orbit.

For related images and video, visit:
http://hubblesite.org/news/2013/04
http://www.spacetelescope.org/news/heic1303
For more information on Hubble visit:
www.nasa.gov/hubble
http://hubblesite.org/
For more information on Spitzer, visit:
www.nasa.gov/spitzer
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington, D.C. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena.

Ray Villard | Newswise
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles
24.04.2015 | Korea Advanced Institute of Science and Technology

nachricht Tau Ceti: The next Earth? Probably not
23.04.2015 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>