Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Super-Tiger Balloon Shatters Flight Record

25.01.2013
Flying high over Antarctica, a NASA long duration balloon has broken the record for longest flight by a balloon of its size.

The record-breaking balloon, carrying the Super Trans-Iron Galactic Element Recorder (Super-TIGER) experiment, has been afloat for 46 days and is on its third orbit around the South Pole.



"This is an outstanding achievement for NASA's Astrophysics balloon team," said John Grunsfeld, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. "Keeping these huge balloons aloft for such long periods lets us do forefront science that would be difficult to do otherwise."

Super-TIGER is flying a new instrument for measuring the rare heavy elements among the flux of high-energy cosmic rays bombarding the Earth from elsewhere in our Milky Way Galaxy. The information retrieved from this mission will be used to develop an understanding where these energetic atomic nuclei are produced and how they achieve their very high energies.

Super-TIGER launched Dec. 8, 2012, from the long duration balloon site near McMurdo Station, Antarctica. The massive 39-million cubic foot scientific balloon carries the 6,000 pound Super-TIGER payload -- equivalent to a large sports utility vehicle -- at a float altitude of 127,000 feet, more than four times the altitude of most commercial airliners. Size-wise, more than 200 blimps could fit inside the balloon.

The Super-TIGER flight shattered the previous record of 41 days and 22 hours, previously set in 2005. The Super-TIGER team plans to fly for another 8-10 days to have it fly closer to McMurdo Station before terminating the flight and recovering the experiment.

"It has taken eight years, but we are so excited about breaking the long duration balloon record. In addition, it looks like the Super-Tiger flight, which is still collecting science data, will raise the bar by a week or two," said Debora Fairbrother, chief of the Scientific Balloon Program Office at NASA’s Wallops Flight Facility in Virginia.

The long duration balloon site at Willy Field, McMurdo Station, takes advantage of the stratospheric anti-cyclonic wind pattern circulating from east to west around the South Pole. The stratospheric wind circulation combined with the sparsely populated continent of Antarctica allows for long duration balloon flights at altitudes above 100,000 feet.

The National Science Foundation Office of Polar Programs manages the U.S. Antarctic Program and provides logistic support for all U.S. scientific operations in Antarctica. The NSF Antarctic Support Contractor provides material support to the NASA Balloon Program, including support of launch and recovery operations throughout the Antarctic Campaign.

The principal investigator of the Super-TIGER mission is Dr. Walter Binns of Washington University, St. Louis, Mo.

NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, is responsible for launch operations and command and control of the balloon during flight.

To monitor the real time flight tracks of the long duration balloons on the Internet, visit:

http://www.csbf.nasa.gov/antarctica/ice.htm

For more information about NASA’s Balloon Program on the Internet, visit:
http://www.wff.nasa.gov/balloons

Rebecca Powell | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/wallops/news/supertiger-record.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>