Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study finds small solar eruptions can have profound effects on unprotected planets

10.04.2015

While no one yet knows what's needed to build a habitable planet, it's clear that the interplay between the sun and Earth is crucial for making our planet livable - a balance between a sun that provides energy and a planet that can protect itself from the harshest solar emissions.

Our sun steadily emits light, energy and a constant flow of particles called the solar wind that bathes the planets as it travels out into space. Larger eruptions of solar material, called coronal mass ejections, or CMEs, occur too, which can disrupt the atmosphere around a planet. On Earth, some of the impact of these CMEs is deflected by a natural magnetic bubble called the magnetosphere.


A relatively small puff of solar material can be seen escaping the sun on the upper left of this movie from ESA and NASA's SOHO on Dec. 19, 2006. This slow ejection was nevertheless powerful enough to cause Venus to lose dramatic amounts of oxygen from its atmosphere four days later.

Credit: ESA/NASA/SOHO/JHelioviewer

But some planets, such as Venus, don't have protective magnetospheres and this can be bad news. On Dec. 19, 2006, the sun ejected a small, slow-moving puff of solar material. Four days later, this sluggish CME was nevertheless powerful enough to rip away dramatic amounts of oxygen out of Venus' atmosphere and send it out into space, where it was lost forever.

Learning just why a small CME had such a strong impact may have profound consequences for understanding what makes a planet hospitable for life. These results appear in the Journal of Geophysical Research on April 9, 2015.

"What if Earth didn't have that protective magnetosphere?" said Glyn Collinson, first author on the paper at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Is a magnetosphere a prerequisite for a planet to support life? The jury is still out on that, but we examine such questions by looking at planets without magnetospheres, like Venus."

Collinson's work began with data from the European Space Agency, or ESA's, Venus Express, which arrived at Venus in 2006 and carried out an eight-year mission. Studying data from its first year, Collinson noted that on Dec. 23, 2006, Venus' atmosphere leaked oxygen at one of the highest densities ever seen. At the same time the particles were escaping, the data also showed something unusual was happening in the constant solar wind passing by the planet.

To learn more, Collinson worked with Lan Jian, a space scientist at NASA Goddard who specializes in identifying events in the solar wind. Using data from Venus Express, Jian pieced together what had hit the planet. It looked like a CME, so she then looked at observations from the joint ESA and NASA Solar and Heliospheric Observatory. They identifed a weak CME on Dec. 19 that was a likely candidate for the one they spotted four days later near Venus. By measuring the time it took to reach Venus, they established that it was moving at about 200 miles per second - which is extremely slow by CME standards, about the same speed as the solar wind itself.

Scientists divide CMEs into two broad categories: those fast enough to drive a shock wave in front of them as they barrel away from the sun, and those that move more slowly, like a fog rolling in. Fast CMEs have been observed at other planets and are known to affect atmospheric escape, but no one has previously observed what a slow one could do.

"The sun coughed out a CME that was fairly unimpressive," said Collinson. "But the planet reacted as if it had been hit by something massive. It turns out it's like the difference between putting a lobster in boiling water, versus putting it in cold water and heating it up slowly. Either way it doesn't go well for the lobster."

Similarly, the effects of the small CME built up over time, ripping off part of Venus's atmosphere and pulling it out into space. This observation doesn't prove that every small CME would have such an effect, but makes it clear that such a thing is possible. That, in turn, suggests that without a magnetosphere a planet's atmosphere is intensely vulnerable to space weather events from the sun.

Venus is a particularly inhospitable planet: It is 10 times hotter than Earth with an atmosphere so thick that the longest any spacecraft has survived on its surface before being crushed is a little over two hours. Perhaps such vulnerabilities to the sun's storms contributed to this environment. Regardless, understanding exactly what effect the lack of a magnetosphere has on a planet like Venus can help us understand more about the habitability of other planets we spot outside our solar system.

The researchers examined their data further to see if they could determine what mechanism was driving off the atmosphere. The incoming CME had clearly pushed in the front nose - the bow shock - of the atmosphere around Venus. The scientists also observed waves within the bow shock that were 100 times more powerful than what's normally present.

"It's kind of like what you'd see in front of a rock in a storm as a wave passes by," said Collinson. "The space in front of Venus became very turbid."

The team developed three possibilities for the mechanism that drove the oxygen into space. First, even a slow CME increases the pressure of the solar wind, which may have disrupted the normal flow of the atmosphere around the planet from front to back, instead forcing it out into space. A second possibility is that the magnetic fields traveling with the CME changed the magnetic fields that are normally induced around Venus by the solar wind to a configuration that can cause atmospheric outflow. Or, third, the waves inside Venus' bowshock may have carried off particles as they moved.

Collinson says he will continue to look through the collected eight years of Venus Express data for more information, but he points out that seeing a CME near another planet is a lucky finding. Near Earth, we have several spacecraft that can observe a CME leaving the sun and its effects closer to Earth, but it's difficult to track such things near other planets.

This was a rare sighting of a CME that provides a crucial insight into a planet so foreign to our own - and in turn into Earth. The more we learn about other worlds, the more we learn about the very history of our own home planet, and what made it so habitable for life to begin with.

Susan Hendrix | EurekAlert!

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>