Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA sees leaping lunar dust

Electrically charged lunar dust near shadowed craters can get lofted above the surface and jump over the shadowed region, bouncing back and forth between sunlit areas on opposite sides, according to new calculations by NASA scientists.

The research is being led by Michael Collier at NASA's Goddard Space Flight Center, Greenbelt, Md., as part of the Dynamic Response of the Environment At the Moon (DREAM) team in partnership with the NASA Lunar Science Institute (NLSI), managed at NASA's Ames Research Center, Moffett Field, Calif.

This is a view from NASA's Lunar Reconnaissance Orbiter spacecraft across the north rim of Cabeus crater. The leaping dust behavior may be observed on the moon in places like this where sunlit areas are close to shaded regions. Credit: NASA/GSFC/Arizona State University

"The motion of an individual dust particle is like a pendulum or a swing," says Collier. "We predict dust can swarm like bees around a hive over partially shaded regions on the moon and other airless objects in the solar system, such as asteroids. We found that this is a new class of dust motion. It does not escape to space or bounce long distances as predicted by others, but instead stays locally trapped, executing oscillations over a shaded region of 1 to 10 meters (yards) in size. These other trajectories are possible, but we now show a third new motion that is possible." Collier is lead author of a paper on this research published October 2012 in Advances in Space Research.

This effect should be especially prominent during dusk and dawn, according to the team, as regions become partially illuminated while features like mountains and crater rims cast long shadows.

"The dust is an indicator of unusual surface electric fields," says William Farrell of NASA Goddard, a co-author on the paper and lead of the NLSI DREAM team. "In these shaded regions, the surface is negatively charged compared to the sunlit regions. This creates a locally complex, larger electric field with separate positively and negatively charged regions, called a dipole field, over the shaded region. The dust performed its swinging motion under the influence of this dipole. Such a surface process occurring on the moon at the line where night transitions to day, called the terminator, might also occur at small bodies like asteroids. It might be a fundamental process occurring at airless rocky bodies."

There is evidence that dust actually moves this way over the lunar surface. "There are hints for this type of dust swarm in Surveyor images. A twilight was observed over the landed platforms during dusk and dawn. This was surprising at first because the moon does not have a dense enough atmosphere to scatter light when the sun is below the horizon. It was long considered to be light scattered from lifted dust. This model suggests the dust is really leaping or swarming overtop a large number of shaded regions that would exist along the lunar dusk/dawn line, called the lunar terminator. It's a natural fit. Charged lunar dust transport is also believed responsible for the Apollo 17 Lunar Ejecta and Meteorites (LEAM) experiment’s observation of highly charged dust near the terminator," adds Collier.

To our eyes, the moon has no apparent activity and seems dead. However, because it has almost no atmosphere, the moon is exposed to the solar wind, a thin stream of electrically conducting gas called plasma blown off the surface of the sun at around a million miles per hour. The effects of sunlight and the solar wind generate a bustle of unseen commotion at the moon. On the day-lit side, sunlight knocks negatively charged electrons off the surface, giving it a positive charge. On the night side or in shadow, electrons from the solar wind rush in, giving the surface a negative charge.

The exact mechanism for launching lunar dust is not uniquely known. Micro-meteoroid impacts can transfer energy to the surface to launch particulates. Also, a rough surface has small, localized concentrations of electric fields that could lift dust electrostatically from the surface. The pendulum motion then happens because sunlit areas on the moon tend to get positively charged, while shaded areas become negatively charged. Since like charges repel each other, a positively charged dust grain in a sunlit area gets pushed away from the positively charged surface. If there were no negatively charged area nearby, the dust grain would rise straight up. However, since opposite charges attract, the positively charged dust gets pulled toward the negatively charged crater floor, bending its path over the crater. Dust launched from the sunlit area with just the right speed will pass over the shaded floor of the crater to the sunlit area on the other side, where the positively charged surface there will reflect it back over the crater again. When many particles do this, the model predicts there should be a swarm or canopy of dust over the crater.

If there were no complications, the particle could continue to bounce between sunlit areas on opposite sides of the crater indefinitely. However, in reality, things like differences in crater rim height, roughness on the crater floor, and interference from the solar wind that weakens the electric field produced by the surface charges can alter the particle's path. These perturbations cause the dust to eventually either fall into the crater or be launched away. "This model provides a natural explanation for the observation of dust ponds inside craters on the asteroid Eros," says Collier.

"Calculating how these complications will affect the path of a dust particle on the moon and around asteroids are good areas for future research," says Collier. "Additionally, we're not sure how many particles get charged and move like this – is it something like one in a thousand, one in a million, or one in a billion? We'd like to do more studies to see how likely it is that a particle will behave this way. Since most of the lunar surface is covered in dust, even one in a billion would still be significant." The team is also planning on examining Apollo-era images to evaluate possible evidence for dust canopies over shadowed craters.

The team includes Collier, Farrell, and Timothy Stubbs, also at NASA Goddard. The research was funded by the NLSI.

For more information about the DREAM team visit:

NLSI is a virtual organization funded by NASA's Science Mission Directorate and the Human Exploration Office in Washington, which enables collaborative, interdisciplinary research in support of NASA lunar science programs. The institute uses technology to bring scientists together from around the world and is comprised of competitively selected U.S. teams and several international partners.

For more information about the NLSI, visit:

Nancy Neal-Jones / Bill Steigerwald
NASA's Goddard Space Flight Center, Greenbelt, Md. /

Bill Steigerwald | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>