Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Science Teams Prepare to Study Asteriod Samples

26.08.2011
Named OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security-Regolith Explorer), the mission is scheduled to embark on a 3.5-billion-mile roundtrip in 2016 to a primitive carbonaceous organic-rich asteroid called RQ36—short for “(101955) 1999 RQ36”. While orbiting the asteroid, the spacecraft will execute a series of touch-and-go maneuvers at selected sample sites and return to Earth by 2023. Clark’s grant will fund her research efforts until 2025.

“Our target asteroid contains a record of the conditions before the solar system was formed, so you can think of the asteroid as a time capsule,” Clark said. “Studying the samples will improve our understanding of how the planets were formed and provide insights into the sources of prebiotic organic compounds necessary for the origin of life. This mission will be the first in the history of space exploration to return a pristine sample of a carbonaceous asteroid.”

In addition, because RQ36 crosses the Earth’s orbit every September and has an outside chance (1 in 1,800) of colliding with the Earth in the year 2182, OSIRIS-REx will give scientists data that can help them refine the asteroid’s orbit and devise strategies to mitigate possible impacts between Earth, RQ36 and other celestial bodies.

During the time leading up to the 2016 launch, Clark will be responsible for integrating the observations of five different science teams to answer scientific questions that will help the mission project select sampling sites. After the spacecraft returns with its samples, Clark and her students will join colleagues to analyze the samples and test theories about the asteroid-meteorite connection and the early formation of the solar system.

In all, OSIRIS-REx will marshal the expertise of scientists from 14 colleges and universities as well as the Goddard Space Flight Center, Lockheed Martin Space Systems Company, the Johnson Space Center, and other organizations. Michael Drake, director of the Lunar and Planetary Laboratory at the University of Arizona, is the principal investigator, and Dante Lauretta, professor of planetary science, is the deputy principal investigator. The project will cost an estimated $800 million dollars, excluding the launch vehicle.

“Like the Moon rocks from the Apollo missions, samples of RQ36 will keep on giving,” said Clark. “Decades after this mission is completed, we’ll be using equipment we haven’t yet dreamed of to test new theories of solar system origin by examining rocks from RQ36.”

A longtime investigator of meteorites and asteroids, Clark has received numerous grants from NASA to study the mineralogical compositions of these celestial objects. Her articles, co-authored frequently with other asteroid scientists, have appeared in the “Journal of Geophysical Research,” “Nature,” “Science” and “Meteoritics and Planetary Science.”

OSIRIS-Rex is the third mission in NASA’s New Frontiers Program. The first was launched in 2006 and will fly by the Pluto Charon system in 2014. The other launched this year and will orbit Jupiter to conduct the first studies of the giant planet’s atmosphere and interior.

To interview Beth Ellen Clark, contact Keith Davis in the Ithaca College media relations office at (607) 274-1153 or kdavis@ithaca.edu.

More information on OSIRIS-REx and videos illustrating the mission are available at http://www.nasa.gov/topics/solarsystem/features/osiris-rex.html and http://www.youtube.com/watch?v=e6XbYLGWmOs.

Keith Davis | Newswise Science News
Further information:
http://www.ithaca.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>