Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Science Teams Prepare to Study Asteriod Samples

Named OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security-Regolith Explorer), the mission is scheduled to embark on a 3.5-billion-mile roundtrip in 2016 to a primitive carbonaceous organic-rich asteroid called RQ36—short for “(101955) 1999 RQ36”. While orbiting the asteroid, the spacecraft will execute a series of touch-and-go maneuvers at selected sample sites and return to Earth by 2023. Clark’s grant will fund her research efforts until 2025.

“Our target asteroid contains a record of the conditions before the solar system was formed, so you can think of the asteroid as a time capsule,” Clark said. “Studying the samples will improve our understanding of how the planets were formed and provide insights into the sources of prebiotic organic compounds necessary for the origin of life. This mission will be the first in the history of space exploration to return a pristine sample of a carbonaceous asteroid.”

In addition, because RQ36 crosses the Earth’s orbit every September and has an outside chance (1 in 1,800) of colliding with the Earth in the year 2182, OSIRIS-REx will give scientists data that can help them refine the asteroid’s orbit and devise strategies to mitigate possible impacts between Earth, RQ36 and other celestial bodies.

During the time leading up to the 2016 launch, Clark will be responsible for integrating the observations of five different science teams to answer scientific questions that will help the mission project select sampling sites. After the spacecraft returns with its samples, Clark and her students will join colleagues to analyze the samples and test theories about the asteroid-meteorite connection and the early formation of the solar system.

In all, OSIRIS-REx will marshal the expertise of scientists from 14 colleges and universities as well as the Goddard Space Flight Center, Lockheed Martin Space Systems Company, the Johnson Space Center, and other organizations. Michael Drake, director of the Lunar and Planetary Laboratory at the University of Arizona, is the principal investigator, and Dante Lauretta, professor of planetary science, is the deputy principal investigator. The project will cost an estimated $800 million dollars, excluding the launch vehicle.

“Like the Moon rocks from the Apollo missions, samples of RQ36 will keep on giving,” said Clark. “Decades after this mission is completed, we’ll be using equipment we haven’t yet dreamed of to test new theories of solar system origin by examining rocks from RQ36.”

A longtime investigator of meteorites and asteroids, Clark has received numerous grants from NASA to study the mineralogical compositions of these celestial objects. Her articles, co-authored frequently with other asteroid scientists, have appeared in the “Journal of Geophysical Research,” “Nature,” “Science” and “Meteoritics and Planetary Science.”

OSIRIS-Rex is the third mission in NASA’s New Frontiers Program. The first was launched in 2006 and will fly by the Pluto Charon system in 2014. The other launched this year and will orbit Jupiter to conduct the first studies of the giant planet’s atmosphere and interior.

To interview Beth Ellen Clark, contact Keith Davis in the Ithaca College media relations office at (607) 274-1153 or

More information on OSIRIS-REx and videos illustrating the mission are available at and

Keith Davis | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>