Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Science Teams Prepare to Study Asteriod Samples

26.08.2011
Named OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security-Regolith Explorer), the mission is scheduled to embark on a 3.5-billion-mile roundtrip in 2016 to a primitive carbonaceous organic-rich asteroid called RQ36—short for “(101955) 1999 RQ36”. While orbiting the asteroid, the spacecraft will execute a series of touch-and-go maneuvers at selected sample sites and return to Earth by 2023. Clark’s grant will fund her research efforts until 2025.

“Our target asteroid contains a record of the conditions before the solar system was formed, so you can think of the asteroid as a time capsule,” Clark said. “Studying the samples will improve our understanding of how the planets were formed and provide insights into the sources of prebiotic organic compounds necessary for the origin of life. This mission will be the first in the history of space exploration to return a pristine sample of a carbonaceous asteroid.”

In addition, because RQ36 crosses the Earth’s orbit every September and has an outside chance (1 in 1,800) of colliding with the Earth in the year 2182, OSIRIS-REx will give scientists data that can help them refine the asteroid’s orbit and devise strategies to mitigate possible impacts between Earth, RQ36 and other celestial bodies.

During the time leading up to the 2016 launch, Clark will be responsible for integrating the observations of five different science teams to answer scientific questions that will help the mission project select sampling sites. After the spacecraft returns with its samples, Clark and her students will join colleagues to analyze the samples and test theories about the asteroid-meteorite connection and the early formation of the solar system.

In all, OSIRIS-REx will marshal the expertise of scientists from 14 colleges and universities as well as the Goddard Space Flight Center, Lockheed Martin Space Systems Company, the Johnson Space Center, and other organizations. Michael Drake, director of the Lunar and Planetary Laboratory at the University of Arizona, is the principal investigator, and Dante Lauretta, professor of planetary science, is the deputy principal investigator. The project will cost an estimated $800 million dollars, excluding the launch vehicle.

“Like the Moon rocks from the Apollo missions, samples of RQ36 will keep on giving,” said Clark. “Decades after this mission is completed, we’ll be using equipment we haven’t yet dreamed of to test new theories of solar system origin by examining rocks from RQ36.”

A longtime investigator of meteorites and asteroids, Clark has received numerous grants from NASA to study the mineralogical compositions of these celestial objects. Her articles, co-authored frequently with other asteroid scientists, have appeared in the “Journal of Geophysical Research,” “Nature,” “Science” and “Meteoritics and Planetary Science.”

OSIRIS-Rex is the third mission in NASA’s New Frontiers Program. The first was launched in 2006 and will fly by the Pluto Charon system in 2014. The other launched this year and will orbit Jupiter to conduct the first studies of the giant planet’s atmosphere and interior.

To interview Beth Ellen Clark, contact Keith Davis in the Ithaca College media relations office at (607) 274-1153 or kdavis@ithaca.edu.

More information on OSIRIS-REx and videos illustrating the mission are available at http://www.nasa.gov/topics/solarsystem/features/osiris-rex.html and http://www.youtube.com/watch?v=e6XbYLGWmOs.

Keith Davis | Newswise Science News
Further information:
http://www.ithaca.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>