Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Van Allen Probes Reveal Zebra Stripes in Space

20.03.2014

Scientists have discovered a new, persistent structure in one of two radiation belts surrounding Earth

NASA's twin Van Allen Probes spacecraft have shown that high-energy electrons in the inner radiation belt display a persistent pattern that resembles slanted zebra stripes. Surprisingly, this structure is produced by the slow rotation of Earth, previously considered incapable of affecting the motion of radiation belt particles, which have velocities approaching the speed of light.


Two giant belts of radiation surround Earth. The inner belt is dominated by electrons and the outer one by protons.

Image Credit: NASA

Scientists had previously believed that increased solar wind activity was the primary force behind any structures in our planet's radiation belts. However, these zebra stripes were shown to be visible even during low solar wind activity, which prompted a new search for how they were generated. That quest led to the unexpected discovery that the stripes are caused by the rotation of Earth. The findings are reported in the March 20, 2014, issue of Nature.

"It is because of the unprecedented resolution of our energetic particle experiment, RBSPICE, that we now understand that the inner belt electrons are, in fact, always organized in zebra patterns," said Aleksandr Ukhorskiy, lead author of the paper at The Johns Hopkins Applied Physics Laboratory, or APL, in Laurel, Md. "Furthermore, our modeling clearly identifies Earth's rotation as the mechanism creating these patterns. It is truly humbling, as a theoretician, to see how quickly new data can change our understanding of physical properties."

Because of the tilt in Earth's magnetic field axis, the planet's rotation generates an oscillating, weak electric field that permeates through the entire inner radiation belt. To understand how that field affects the electrons, Ukhorskiy suggested imagining that the electrons are like a viscous fluid. The global oscillations slowly stretch and fold the fluid, much like taffy is stretched and folded in a candy store machine. The stretching and folding process results in the striped pattern observed across the entire inner belt, extending from above Earth's atmosphere, about 500 miles above the planet's surface up to roughly 8,000 miles.

The radiation belts are dynamic doughnut-shaped regions around our planet, extending high above the atmosphere, made up of high-energy particles, both electrons and charged particles called ions, which are trapped by Earth's magnetic field. Radiation levels across the belts are affected by solar activity that causes energy and particles to flow into near-Earth space. During active times, radiation levels can dramatically increase, which can create hazardous space weather conditions that harm orbiting spacecraft and endanger humans in space. It is the goal of the Van Allen Probes mission to understand how and why radiation levels in the belts change with time.

"The RBSPICE instrument has remarkably fine resolution and so it was able to bring into focus a phenomena that we previously didn't even know existed," said David Sibeck, the mission scientist for the Van Allen Probes at NASA's Goddard Space Flight Center in Greenbelt, Md. "Better yet, we have a great team of scientists to take advantage of these unprecedented observations: We couldn't have interpreted this data without analysis from strong theoreticians."

NASA launched the Van Allen Probes in the summer of 2012. APL built and operates the probes for NASA's Science Mission Directorate. This is the second mission in NASA's Living With a Star program, which Goddard manages. The program explores aspects of the connected sun-Earth system that directly affect life and society.

Geoff Brown / Karen C. Fox
APL / NASA's Goddard Space Flight Center, Greenbelt, Md.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: APL Earth Flight Greenbelt NASA Space activity atmosphere conditions electrons particles spacecraft velocities zebra

More articles from Physics and Astronomy:

nachricht Upside down and inside out
27.04.2015 | University of Cambridge

nachricht Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles
24.04.2015 | Korea Advanced Institute of Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>