Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Kepler Mission Changing How Astronomers Study Distant Stars

28.10.2010
The quantity and quality of data coming back from NASA’s Kepler Mission is changing how astronomers study stars, said Iowa State University’s Steve Kawaler.

“It’s really amazing,” said Kawaler, an Iowa State professor of physics and astronomy. “It’s as amazing as I feared. I didn’t appreciate how hard it is to digest all the information efficiently.”

The Kepler spacecraft, he said, “is a discovery machine.”

Kepler launched March 6, 2009, from Florida’s Cape Canaveral Air Force Station. The spacecraft is orbiting the sun carrying a photometer, or light meter, to measure changes in star brightness. The photometer includes a telescope 37 inches in diameter connected to a 95 megapixel CCD camera. That instrument is continually pointed at the Cygnus-Lyra region of the Milky Way galaxy. Its primary job is to use tiny variations in the brightness of the stars within its view to find earth-like planets that might be able to support life.

The Kepler Asteroseismic Investigation is also using data from that photometer to study stars. The investigation is led by a four-member steering committee: Kawaler, Chair Ron Gilliland of the Space Telescope Science Institute based in Baltimore, Jorgen Christensen-Dalsgaard and Hans Kjeldsen, both of Aarhus University in Aarhus, Denmark.

And Kepler has already buried the star-studiers in data.

Kawaler, who has served as director of a ground-based research consortium called the Whole Earth Telescope, said one year of data from Kepler will be the equivalent of about 300 years of data from the Whole Earth Telescope.

Kawaler has had a hand in turning some of that data into eight scientific papers that have been published or are in the process of being published. At Iowa State, he shares the analysis work with undergraduate Sheldon Kunkel; graduate students Bert Pablo and Riley Smith; visiting scientist Andrzej Baran of Krakow, Poland; and nearly 50 astronomers from around the world who are part of the Working Group on Compact Pulsators.

Some of the data describe a binary star system – two stars held together by their gravity and orbiting a common center of mass. In this case, one star is a white dwarf, a star in the final stages of its life cycle; the other is a subdwarf B star, a star in an intermediate stage of development. Kepler not only returned information about the star system’s velocity and mass, but also data providing a new demonstration of Einstein’s Theory of Relativity.

Kawaler said when the subdwarf’s orbit sends it toward Earth, Kepler detects 0.2 percent more light than when it moves away from Earth. This very slight difference is one effect of Einstein's Special Theory of Relativity: the theory predicts a very small increase in the overall brightness when the star is moving towards us (and a decrease when moving away). This relativistic “beaming” is a very small effect that has been accurately measured for stars for the first time with Kepler.

Kawaler said another Kepler advantage is its ability to collect data on a lot of stars. It is expected to continuously observe about 170,000 stars for at least three and a half years.

That gives researchers a much better idea about the average star, Kawaler said.

In the past, researchers analyzed a few interesting stars at a time. “But here, we’re learning more about star fundamentals by studying the average guys. The large number of stars we’re getting data from gives us a much more accurate picture of stars.”

Kepler, for example, is giving researchers a better picture of red giant stars by more precisely measuring their oscillations or changes in brightness. Studies of those star quakes can answer questions about the interior properties of stars such as their density, temperature and composition. It's similar to how geologists study earthquakes to learn about the Earth's interior.

Our sun will evolve into a red giant in about five billion years. It will exhaust its hydrogen fuel, expand enormously and shine hundreds of times brighter than it does today. After that, it will be similar to the stars that Kawaler’s group has been studying.

Thanks to Kepler, “We’re understanding these stars better,” Kawaler said. “And that’s a very exciting thing, because these stars represent the future of our own sun.”

Steve Kawaler, Physics and Astronomy, 515-294-9728, sdk@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>