Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Kepler Mission Changing How Astronomers Study Distant Stars

28.10.2010
The quantity and quality of data coming back from NASA’s Kepler Mission is changing how astronomers study stars, said Iowa State University’s Steve Kawaler.

“It’s really amazing,” said Kawaler, an Iowa State professor of physics and astronomy. “It’s as amazing as I feared. I didn’t appreciate how hard it is to digest all the information efficiently.”

The Kepler spacecraft, he said, “is a discovery machine.”

Kepler launched March 6, 2009, from Florida’s Cape Canaveral Air Force Station. The spacecraft is orbiting the sun carrying a photometer, or light meter, to measure changes in star brightness. The photometer includes a telescope 37 inches in diameter connected to a 95 megapixel CCD camera. That instrument is continually pointed at the Cygnus-Lyra region of the Milky Way galaxy. Its primary job is to use tiny variations in the brightness of the stars within its view to find earth-like planets that might be able to support life.

The Kepler Asteroseismic Investigation is also using data from that photometer to study stars. The investigation is led by a four-member steering committee: Kawaler, Chair Ron Gilliland of the Space Telescope Science Institute based in Baltimore, Jorgen Christensen-Dalsgaard and Hans Kjeldsen, both of Aarhus University in Aarhus, Denmark.

And Kepler has already buried the star-studiers in data.

Kawaler, who has served as director of a ground-based research consortium called the Whole Earth Telescope, said one year of data from Kepler will be the equivalent of about 300 years of data from the Whole Earth Telescope.

Kawaler has had a hand in turning some of that data into eight scientific papers that have been published or are in the process of being published. At Iowa State, he shares the analysis work with undergraduate Sheldon Kunkel; graduate students Bert Pablo and Riley Smith; visiting scientist Andrzej Baran of Krakow, Poland; and nearly 50 astronomers from around the world who are part of the Working Group on Compact Pulsators.

Some of the data describe a binary star system – two stars held together by their gravity and orbiting a common center of mass. In this case, one star is a white dwarf, a star in the final stages of its life cycle; the other is a subdwarf B star, a star in an intermediate stage of development. Kepler not only returned information about the star system’s velocity and mass, but also data providing a new demonstration of Einstein’s Theory of Relativity.

Kawaler said when the subdwarf’s orbit sends it toward Earth, Kepler detects 0.2 percent more light than when it moves away from Earth. This very slight difference is one effect of Einstein's Special Theory of Relativity: the theory predicts a very small increase in the overall brightness when the star is moving towards us (and a decrease when moving away). This relativistic “beaming” is a very small effect that has been accurately measured for stars for the first time with Kepler.

Kawaler said another Kepler advantage is its ability to collect data on a lot of stars. It is expected to continuously observe about 170,000 stars for at least three and a half years.

That gives researchers a much better idea about the average star, Kawaler said.

In the past, researchers analyzed a few interesting stars at a time. “But here, we’re learning more about star fundamentals by studying the average guys. The large number of stars we’re getting data from gives us a much more accurate picture of stars.”

Kepler, for example, is giving researchers a better picture of red giant stars by more precisely measuring their oscillations or changes in brightness. Studies of those star quakes can answer questions about the interior properties of stars such as their density, temperature and composition. It's similar to how geologists study earthquakes to learn about the Earth's interior.

Our sun will evolve into a red giant in about five billion years. It will exhaust its hydrogen fuel, expand enormously and shine hundreds of times brighter than it does today. After that, it will be similar to the stars that Kawaler’s group has been studying.

Thanks to Kepler, “We’re understanding these stars better,” Kawaler said. “And that’s a very exciting thing, because these stars represent the future of our own sun.”

Steve Kawaler, Physics and Astronomy, 515-294-9728, sdk@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>