Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble Telescope Witnesses Asteroid's Mysterious Disintegration

07.03.2014

NASA's Hubble Space Telescope has recorded the never-before-seen break-up of an asteroid into as many as 10 smaller pieces.

Fragile comets, comprised of ice and dust, have been seen falling apart as they near the sun, but nothing like this has ever before been observed in the asteroid belt.


This series of Hubble Space Telescope images reveals the breakup of an asteroid over a period of several months starting in late 2013. The largest fragments are up to 180 meters (200 yards) in radius. Image Credit: NASA, ESA, D. Jewitt (UCLA)

"This is a rock, and seeing it fall apart before our eyes is pretty amazing," said David Jewitt of the University of California at Los Angeles, who led the astronomical forensics investigation.

The crumbling asteroid, designated P/2013 R3, was first noticed as an unusual, fuzzy-looking object by the Catalina and Pan STARRS sky surveys on Sept. 15, 2013. A follow-up observation on October 1 with the W. M. Keck Observatory on the summit of Mauna Kea, a dormant volcano on the island of Hawaii, revealed three bodies moving together in an envelope of dust nearly the diameter of Earth.

"The Keck Observatory showed us this thing was worth looking at with Hubble," Jewitt said. "With its superior resolution, space telescope observations soon showed there were really 10 embedded objects, each with comet-like dust tails. The four largest rocky fragments are up to 400 yards in diameter, about four times the length of a football field."

Hubble data showed the fragments drifting away from each other at a leisurely one mph.  The asteroid began coming apart early last year, but new pieces continue to reveal themselves, as proved in the most recent images.

It is unlikely the asteroid is disintegrating because of a collision with another asteroid, which would have been instantaneous and violent by comparison to what has been observed. Debris from such a high-velocity smashup would also be expected to travel much faster than observed. Nor is the asteroid coming unglued due to the pressure of interior ices warming and vaporizing.

This leaves a scenario in which the asteroid is disintegrating due to a subtle effect of sunlight, which causes the rotation rate of the asteroid to gradually increase. Eventually, its component pieces -- like grapes on a stem -- succumb to centrifugal force and gently pull apart. The possibility of disruption in this manner has been discussed by scientists for several years, but never reliably observed.

For this scenario to occur, P/2013 R3 must have a weak, fractured interior -- probably as the result of numerous non-destructive collisions with other asteroids. Most small asteroids are thought to have been severely damaged in this way. P/2013 R3 is likely the byproduct of just such a collision sometime in the last billion years.

With the previous discovery of an active asteroid spouting six tails, named P/2013 P5, astronomers are finding more evidence the pressure of sunlight may be the primary force causing the disintegration of small asteroids -- less than a mile across-- in our solar system.

The asteroid's remnant debris, weighing about 200,000 tons, will in the future provide a rich source of meteoroids. Most will eventually plunge into the sun, but a small fraction of the debris may one day blaze across our skies as meteors.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit:

http://www.nasa.gov/hubble

J.D. Harrington
Headquarters, Washington
202-358-5241
j.d.harrington@nasa.gov

Ray Villard
Space Science Telescope Institute, Baltimore, Md.
410-338-4493 / 410-338-4514
Villard@stsci.edu

Ray Villard | EurekAlert!

Further reports about: Flight Hubble Mysterious NASA Observatory STScI Space Telescope asteroids collision diameter fragments

More articles from Physics and Astronomy:

nachricht Theory of the strong interaction verified
27.03.2015 | Forschungszentrum Juelich

nachricht Dark matter even darker than once thought
27.03.2015 | ESA/Hubble Information Centre

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>