Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble Maps the Temperature and Water Vapor on an Extreme Exoplanet

10.10.2014

A team of scientists using NASA’s Hubble Space Telescope has made the most detailed global map yet of the glow from a turbulent planet outside our solar system, revealing its secrets of air temperatures and water vapor.

Hubble observations show the exoplanet, called WASP-43b, is no place to call home. It is a world of extremes, where seething winds howl at the speed of sound from a 3,000-degree-Fahrenheit “day” side, hot enough to melt steel, to a pitch-black “night” side with plunging temperatures below 1,000 degrees Fahrenheit.


This is a temperature map of the "hot Jupiter" class exoplanet WASP 43b. The white-colored region on the daytime side is 2,800 degrees Fahrenheit. The nighttime side temperatures drop to under 1,000 degrees Fahrenheit.

Image Credit: NASA/ESA

Astronomers have mapped the temperatures at different layers of the planet's atmosphere and traced the amount and distribution of water vapor. The findings have ramifications for the understanding of atmospheric dynamics and how giant planets like Jupiter are formed.

“These measurements have opened the door for a new kinds of ways to compare the properties of different types of planets,” said team leader Jacob Bean of the University of Chicago.

First discovered in 2011, WASP-43b is located 260 light-years away. The planet is too distant to be photographed, but because its orbit is observed edge-on to Earth, astronomers detected it by observing regular dips in the light of its parent star as the planet passes in front of it.

“Our observations are the first of their kind in terms of providing a two-dimensional map on the longitude and altitude of the planet’s thermal structure that can be used to constrain atmospheric circulation and dynamical models for hot exoplanets,” said team member Kevin Stevenson of the University of Chicago.

As a hot ball of predominantly hydrogen gas, there are no surface features on the planet, such as oceans or continents that can be used to track its rotation. Only the severe temperature difference between the day and night sides can be used by a remote observer to mark the passage of a day on this world.

The planet is about the same size as Jupiter, but is nearly twice as dense. The planet is so close to its orange dwarf host star that it completes an orbit in just 19 hours. The planet also is gravitationally locked so that it keeps one hemisphere facing the star, just as our moon keeps one face toward Earth.

This was the first time astronomers were able to observe three complete rotations of any planet, which occurred during a span of four days. Scientists combined two previous methods of analyzing exoplanets in an unprecedented technique to study the atmosphere of WASP-43b. They used spectroscopy, dividing the planet’s light into its component colors, to determine the amount of water and the temperatures of the atmosphere. By observing the planet’s rotation, the astronomers also were able to precisely measure how the water is distributed at different longitudes.

Because there is no planet with these tortured conditions in our solar system, characterizing the atmosphere of such a bizarre world provides a unique laboratory for better understanding planet formation and planetary physics.

“The planet is so hot that all the water in its atmosphere is vaporized, rather than condensed into icy clouds like on Jupiter,” said team member Laura Kreidberg of the University of Chicago.

The amount of water in the giant planets of our solar system is poorly known because water that has precipitated out of the upper atmospheres of cool gas giant planets like Jupiter is locked away as ice. But so-called “hot Jupiters,” gas giants that have high surface temperatures because they orbit very close to their stars, water is in a vapor that can be readily traced.

“Water is thought to play an important role in the formation of giant planets, since comet-like bodies bombard young planets, delivering most of the water and other molecules that we can observe,” said Jonathan Fortney, a member of the team from the University of California, Santa Cruz.

In order to understand how giant planets form astronomers want to know how enriched they are in different elements. The team found that WASP-43b has about the same amount of water as we would expect for an object with the same chemical composition as our sun, shedding light on the fundamentals about how the planet formed. The team next aims to make water-abundance measurements for different planets.

The results are presented in two new papers, one published online in Science Express Thursday and the other published in The Astrophysical Journal Letters on Sept. 12.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit:

http://www.nasa.gov/hubble and http://hubblesite.org/news/2014/28

Felicia Chou
Headquarters, Washington
202-358-0257
felicia.chou@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu

Ray Villard | Eurek Alert!

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>