Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Hubble Finds Extremely Distant Galaxy through Cosmic Magnifying Glass

17.10.2014

Peering through a giant cosmic magnifying glass, NASA’s Hubble Space Telescope has spotted a tiny, faint galaxy -- one of the farthest galaxies ever seen. The diminutive object is estimated to be more than 13 billion light-years away.

This galaxy offers a peek back to the very early formative years of the universe and may just be the tip of the iceberg.


The mammoth galaxy cluster Abell 2744 is so massive that its powerful gravity bends the light from galaxies far behind it, making these otherwise unseen background objects appear larger and brighter than they would normally.

Image Credit: NASA, J. Lotz, (STScI)

“This galaxy is an example of what is suspected to be an abundant, underlying population of extremely small, faint objects that existed about 500 million years after the big bang, the beginning of the universe,” explained study leader Adi Zitrin of the California Institute of Technology in Pasadena, California.

“The discovery is telling us galaxies as faint as this one exist, and we should continue looking for them and even fainter objects, so that we can understand how galaxies and the universe have evolved over time.”

The galaxy was detected by the Frontier Fields program, an ambitious three-year effort that teams Hubble with NASA’s other great observatories -- the Spitzer Space Telescope and Chandra X-ray Observatory -- to probe the early universe by studying large galaxy clusters.

These clusters are so massive their gravity deflects light passing through them, magnifying, brightening, and distorting background objects in a phenomenon called gravitational lensing. These powerful lenses allow astronomers to find many dim, distant structures that otherwise might be too faint to see.

The discovery was made using the lensing power of the mammoth galaxy cluster Abell 2744, nicknamed Pandora’s Cluster, which produced three magnified images of the same, faint galaxy. Each magnified image makes the galaxy appear 10 times larger and brighter than it would look without the zooming qualities of the cluster.

The galaxy measures merely 850 light-years across -- 500 times smaller than our Milky Way galaxy-- and is estimated to have a mass of only 40 million suns. The Milky Way, in comparison, has a stellar mass of a few hundred billion suns. And the galaxy forms about one star every three years, whereas the Milky Way galaxy forms roughly one star per year. However, given its small size and low mass, Zitrin said the tiny galaxy actually is rapidly evolving and efficiently forming stars.

The astronomers believe galaxies such as this one are probably small clumps of matter that started to form stars and shine, but do not yet have a defined structure. It is possible Hubble is only detecting one bright clump magnified due to the lensing. This would explain why the object is smaller than typical field galaxies of that time.

Zitrin’s team spotted the galaxy’s gravitationally multiplied images using near-infrared and visible-light photos of the galaxy cluster taken by Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys. But they needed to measure how far away it was from Earth.

Usually, astronomers can determine an object’s distance based on how far its light has been stretched as the universe slowly expands. Astronomers can precisely measure this effect through spectroscopy, which characterizes an object’s light. But the gravitationally-lensed galaxy and other objects found at this early time period are too far away and too dim for spectroscopy, so astronomers use an object’s color to estimate its distance. The universe’s expansion reddens an object’s color in predictable ways, which scientists can measure.

Zitrin’s team performed the color-analysis technique and took advantage of the multiple images produced by the gravitational lens to independently confirm the group’s distance estimate. The astronomers measured the angular separation between the three magnified images of the galaxy in the Hubble photos. The greater the angular separation due to lensing, the farther away the object is from Earth.

To test this concept, the astronomers compared the three magnified images with the locations of several other closer, multiply-imaged background objects captured in Hubble images of Pandora’s cluster. The angular distance between the magnified images of the closer galaxies was smaller.

“These measurements imply that, given the large angular separation between the three images of our background galaxy, the object must lie very far away,” Zitrin explained. “It also matches the distance estimate we calculated, based on the color-analysis technique. So we are about 95 percent confident this object is at a remote distance, at redshift 10, a measure of the stretching of space since the big bang. The lensing takes away any doubt that this might be a heavily reddened, nearby object masquerading as a far more distant object.”

Astronomers have long debated whether such early galaxies could have provided enough radiation to warm the hydrogen that cooled soon after the big bang. This process, called reionization, is thought to have occurred 200 million to 1 billion years after the birth of the universe. Reionization made the universe transparent to light, allowing astronomers to look far back into time without running into a “fog” of cold hydrogen.

The team’s results appeared in the September online edition of The Astrophysical Journal Letters.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit:

http://www.nasa.gov/hubble

Felicia Chou

Headquarters, Washington

202-358-0257

felicia.chou@nasa.gov

 

Donna Weaver

Space Telescope Science Institute, Baltimore, Md.

410-338-4493

dweaver@stsci.edu

Ray Villard | Eurek Alert!

More articles from Physics and Astronomy:

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

nachricht Next-generation optics offer the widest real-time views of vast regions of the sun
11.01.2017 | New Jersey Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>