Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA's Hubble Finds Dwarf Galaxies Formed More Than Their Fair Share of Universe's Stars


They may be little, but they pack a big star-forming punch. New observations from NASA's Hubble Space Telescope show small galaxies, also known as dwarf galaxies, are responsible for forming a large proportion of the universe's stars.

Studying this early epoch of the universe's history is critical to fully understanding how these stars formed and how galaxies grew and evolved 3.5 to 6 billion years after the beginning of the universe. The result supports a decade-long investigation into whether there is a link between a galaxy's mass and its star-forming activity, and helps paint a consistent picture of events in the early universe.

Hiding among these thousands of galaxies are faint dwarf galaxies residing in the early universe, between 2 and 6 billion years after the big bang, an important time period when most of the stars in the universe were formed. Some of these galaxies are undergoing starbursts.

Image Credit: NASA and ESA

"We already suspected these kinds of galaxies would contribute to the early wave of star formation, but this is the first time we've been able to measure the effect they actually had," said  Hakim Atek of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, lead author of the study published in the June 19 online issue of The Astrophysical Journal. "They appear to have had a surprisingly huge role to play."

Previous studies of star-forming galaxies were restricted to the analysis of mid- or high-mass galaxies, leaving out the numerous dwarf galaxies that existed in this era of prolific star formation. Astronomers conducted a recent study using data from Hubble's Wide Field Camera 3 (WFC3) to take a further and significant step forward in understanding this formative era by examining a sample of starburst galaxies in the young universe. Starburst galaxies form stars at a furiously fast rate, far above what is considered by experts to be a normal rate of star formation.

... more about:
»EPFL »Flight »Hubble »NASA »Polytechnique »Telescope

The infrared capabilities of WFC3 have allowed astronomers to finally calculate how much these low-mass dwarf galaxies contributed to the star population in our universe.

"These galaxies are forming stars so quickly they could actually double their entire mass of stars in only 150 million years -- an incredibly short astronomical timescale," adds co-author Jean-Paul Kneib, also of EPFL.

Researchers say such massive growth would take most “normal” galaxies 1 to 3 billion years.

In addition to adding new insight to how and where the stars in our universe formed, this latest finding may also help to unravel the secrets of galactic evolution. Galaxies evolve through a jumble of complex processes. As galaxies merge, they are consumed by newly-formed stars that feed on their combined gases, and exploding stars and supermassive black holes emit galactic material – a process that depletes the mass of a galaxy.

It is unusual to find a galaxy in a state of starburst, which suggests to researchers starburst galaxies are the result of an unusual incident in the past, such as a violent merger.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit: 

J.D. Harrington
Headquarters, Washington

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4493 / 410-338-4514

Ray Villard | Eurek Alert!
Further information:

Further reports about: EPFL Flight Hubble NASA Polytechnique Telescope

More articles from Physics and Astronomy:

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

nachricht Iowa State astronomers say comet fragments best explanation of mysterious dimming star
25.11.2015 | Iowa State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>