Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble Extends Stellar Tape Measure 10 Times Farther Into Space

11.04.2014

Using NASA's Hubble Space Telescope, astronomers now can precisely measure the distance of stars up to 10,000 light-years away -- 10 times farther than previously possible.

Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble's accuracy for making angular measurements. The technique, when applied to the age-old method for gauging distances called astronomical parallax, extends Hubble's tape measure 10 times farther into space.


By applying a technique called spatial scanning to an age-old method for gauging distances called astronomical parallax, scientists now can use NASA’s Hubble Space Telescope to make precision distance measurements 10 times farther into our galaxy than previously possible.

Image Credit: NASA/ESA, A.Feild/STScI

"This new capability is expected to yield new insight into the nature of dark energy, a mysterious component of space that is pushing the universe apart at an ever-faster rate," said Noble laureate Adam Riess of the Space Telescope Science Institute (STScI) in Baltimore, Md.

Parallax, a trigonometric technique, is the most reliable method for making astronomical distance measurements, and a practice long employed by land surveyors here on Earth. The diameter of Earth's orbit is the base of a triangle and the star is the apex where the triangle's sides meet. The lengths of the sides are calculated by accurately measuring the three angles of the resulting triangle.

Astronomical parallax works reliably well for stars within a few hundred light-years of Earth. For example, measurements of the distance to Alpha Centauri, the star system closest to our sun, vary only by one arc second. This variance in distance is equal to the apparent width of a dime seen from two miles away.

Stars farther out have much smaller angles of apparent back-and-forth motion that are extremely difficult to measure. Astronomers have pushed to extend the parallax yardstick ever deeper into our galaxy by measuring smaller angles more accurately.

This new long-range precision was proven when scientists successfully used Hubble to measure the distance of a special class of bright stars called Cepheid variables, approximately 7,500 light-years away in the northern constellation Auriga. The technique worked so well, they are now using Hubble to measure the distances of other far-flung Cepheids.

Such measurements will be used to provide firmer footing for the so-called cosmic "distance ladder." This ladder's "bottom rung" is built on measurements to Cepheid variable stars that, because of their known brightness, have been used for more than a century to gauge the size of the observable universe. They are the first step in calibrating far more distant extra-galactic milepost markers such as Type Ia supernovae.

Riess and the Johns Hopkins University in Baltimore, Md., in collaboration with Stefano Casertano of STScI, developed a technique to use Hubble to make measurements as small as five-billionths of a degree.

To make a distance measurement, two exposures of the target Cepheid star were taken six months apart, when Earth was on opposite sides of the sun. A very subtle shift in the star's position was measured to an accuracy of 1/1,000 the width of a single image pixel in Hubble's Wide Field Camera 3, which has 16.8 megapixels total.  A third exposure was taken after another six months to allow for the team to subtract the effects of the subtle space motion of stars, with additional exposures used to remove other sources of error.

Riess shares the 2011 Nobel Prize in Physics with another team for his leadership in the 1998 discovery the expansion rate of the universe is accelerating -- a phenomenon widely attributed to a mysterious, unexplained dark energy filling the universe. This new high-precision distance measurement technique is enabling Riess to gauge just how much the universe is stretching.  His goal is to refine estimates of the universe's expansion rate to the point where dark energy can be better characterized.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. STScI conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit:

http://www.nasa.gov/hubble 

J.D. Harrington
Headquarters, Washington
202-358-5241
j.d.harrington@nasa.gov

Ray Villard
Space Science Telescope Institute, Baltimore, Md.
410-338-4493 / 410-338-4514
Villard@stsci.edu

Rob Gutro | Eurek Alert!

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>