Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble and Chandra Discover Dark Matter Is Not as Sticky as Once Thought

31.03.2015

Astronomers using observations from NASA's Hubble Space Telescope and Chandra X-ray Observatory have found that dark matter does not slow down when colliding with each other. This means that it interacts with itself even less than previously thought. Researchers say this finding narrows down the options for what this mysterious substance might be.

Dark matter is a transparent form of matter that makes up most of the mass in the universe. Because dark matter does not reflect, absorb, or emit light, it can only be traced indirectly, such as by measuring how it warps space through gravitational lensing, where the light from distant sources is magnified and distorted by the gravitational effects of dark matter.


NASA/ESA/STScI/CXC, D. Harvey (École Polytechnique Fédérale de Lausanne, Switzerland; Univ. of Edinburgh, UK), R. Massey (Durham Univ., UK), T. Kitching (Univ. College London, UK), and A. Taylor and E. Tittley (Univ. of Edinburgh, UK)

This collage shows images of six different galaxy clusters taken with NASA's Hubble Space Telescope and Chandra X-ray Observatory. The clusters were observed in a study of how dark matter in clusters of galaxies behaves when the clusters collide. A total of 72 large cluster collisions were studied. Using visible-light images from Hubble, the team was able to map the post-collision distribution of stars and also of the dark matter (colored in blue), which was traced through its gravitational lensing effects on background light. Chandra was used to see the X-ray emission from impacted gas (pink). The team determined that dark matter interacts with itself and everything else even less than previously thought. The clusters shown here are, from left to right and top to bottom: MACS J0416.1-2403, MACS J0152.5-2852, MACS J0717.5+3745, Abell 370, Abell 2744, and ZwCl 1358+62.


NASA/ESA/D. Harvey/EPFL/R. Massey/Durham U./T. Kitching/U. College London/A. Taylor, E. Tittley/U. Edinburgh/HST SM4 ERO Team/ST-ECF, ESO/D. Coe/STScI/J. Merten/Heidelberg/Bologna/HST Frontier Fields/H. Ebeling/U. Hawaii/J.-P. Kneib/LAM/J. Richard/Caltech

This collage shows images of six different galaxy clusters taken with NASA's Hubble Space Telescope. The clusters were observed in a study of how dark matter in clusters of galaxies behaves when the clusters collide. Seventy-two large cluster collisions were studied in total. Using visible-light images from Hubble, the team was able to map the post-collision distribution of stars and also of the dark matter (colored in blue), which was traced through its gravitational lensing effects on background light. The team determined that dark matter interacts with itself less than previously thought. The clusters shown here are, from left to right and top to bottom: MACS J0416.1-2403, MACS J0152.5-2852, MACS J0717.5+3745, Abell 370, Abell 2744, and ZwCl 1358+62.

The two space observatories were used to study how dark matter in clusters of galaxies behaves when the clusters collide. Hubble was used to map the post-collision distribution of stars and dark matter, which was traced through its gravitational lensing effects on background light. Chandra was used to see the X-ray emission from the colliding gas. The results will be published in the journal Science on March 27.

"Dark matter is an enigma we have long sought to unravel," said John Grunsfeld, assistant administrator of NASA's Science Mission Directorate in Washington. "With the combined capabilities of these great observatories, both in extended mission, we are ever closer to understanding this cosmic phenomenon."

To learn more about dark matter, researchers can study it in a way similar to experiments on visible matter -- by watching what happens when it bumps into celestial objects. An excellent natural laboratory for this analysis can be found in collisions between galaxy clusters.

Galaxy clusters are made of three main ingredients: galaxies, clouds of gas, and dark matter. During collisions, the clouds of gas enveloping the galaxies crash into each other and slow down or stop. The galaxies are much less affected by the drag from the gas and, because of the huge gaps between the stars within them, do not have a slowing effect on each other.

"We know how gas and galaxies react to these cosmic crashes and where they emerge from the wreckage. Comparing how dark matter behaves can help us to narrow down what it actually is," explained David Harvey of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, lead author of the new study.

Harvey and his team used data from Hubble and Chandra to study 72 large cluster collisions. The collisions happened at different times, and are seen from different angles -- some from the side, and others head-on.

The team found that, like the galaxies, the dark matter continued straight through the violent collisions without slowing down relative to the galaxies. Because galaxies pass through unimpeded, if astronomers observe a separation between the distribution of the galaxies and the dark matter then they know it has slowed down. If the dark matter does slow, it will drag and lie somewhere between the galaxies and the gas, which tells researchers how much it has interacted.

The leading theory is that dark matter particles spread throughout the galaxy clusters do not frequently bump into each other. The reason the dark matter doesn't slow down is because not only does it not interact with visible particles, it also infrequently interacts with other dark matter. The team has measured this "self-interaction" and found it occurs even less frequently than previously thought.

"A previous study had seen similar behavior in the Bullet Cluster," said team member Richard Massey of Durham University, U.K. "But it's difficult to interpret what you're seeing if you have just one example. Each collision takes hundreds of millions of years, so in a human lifetime we only get to see one freeze-frame from a single camera angle. Now that we have studied so many more collisions, we can start to piece together the full movie and better understand what is going on."

By finding that dark matter interacts with itself even less than previously thought, the team has successfully narrowed down the properties of dark matter. Particle physics theorists now have a smaller set of unknowns to work with when building their models.

"It is unclear how much we expect dark matter to interact with itself because dark matter is already going against everything we know, said Harvey. "We know from previous observations that it must interact with itself reasonably weakly, however this study has now placed it below that of two protons interacting with one another -- which is one theory for dark matter." Harvey said that the results suggest that dark matter is unlikely to be only a kind of dark proton. If dark matter scattered like protons do with one another (electrostatically) it would have been detected. "This challenges the idea that there exists 'dark photons,' the dark matter equivalent of photons," he said.

Dark matter could potentially have rich and complex properties, and there are still several other types of interactions to study. These latest results rule out interactions that create a strong frictional force, causing dark matter to slow down during collisions. Other possible interactions could make dark matter particles bounce off each other like billiard balls, causing dark matter particles to be ejected from the clouds by collisions or for dark matter blobs to change shape. The team will be studying these next.

To further increase the number of collisions that can be studied, the team is also looking to study collisions involving individual galaxies, which are much more common.

"There are still several viable candidates for dark matter, so the game is not over, but we are getting nearer to an answer," concludes Harvey. "These
'astronomically large' particle colliders are finally letting us glimpse the dark world all around us but just out of reach."

For images and more information about the Hubble Space Telescope, visit:

http://hubblesite.org/news/2015/10

http://www.nasa.gov/hubble

http://www.spacetelescope.org/news/heic1506

For more information about Chandra, visit:
http://www.nasa.gov/mission_pages/chandra/main/index.html

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington, D.C. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

Contact Information
Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu

Georgia Bladon
ESA/Hubble, Garching, Germany
011-44-7816-291261
gbladon@partner.eso.org

Megan Watzke
Chandra X-ray Center, Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu

David Harvey
EPFL, Lausanne, Switzerland; University of Edinburgh, Edinburgh, UK
011-41-22-3792475
david.harvey@epfl.ch

Richard Massey
Durham University, Durham, UK
011-44-7740-648080
r.j.massey@durham.ac.uk

Ray Villard
News Chief
villard@stsci.edu
Phone: 410-338-4514

Ray Villard | newswise

More articles from Physics and Astronomy:

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>