Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Research Estimates How Long Titan's Chemical Factory Has Been in Business

25.04.2012
Saturn's giant moon Titan hides within a thick, smoggy atmosphere that's well-known to scientists as one of the most complex chemical environments in the solar system. It's a productive "factory" cranking out hydrocarbons that rain down on Titan's icy surface, cloaking it in soot and, with a brutally cold surface temperature of around minus 270 degrees Fahrenheit, forming lakes of liquid methane and ethane.

However the most important raw ingredient in this chemical factory - methane gas, a molecule made up of one carbon atom joined to four hydrogen atoms – should not last for long because it's being continuously destroyed by sunlight and converted to more complex molecules and particles.


Titan's dense atmosphere shrouds the moon beneath a tan haze in this image. Saturn's third-largest moon Dione can be seen through the Titan haze in this view of the two posing before the planet and its rings from NASA's Cassini spacecraft. The rings, viewed nearly edge-on, appear as a horizontal line through the image. The rings cast shadows on Saturn, which appear as dark lines at the bottom of the image. The Cassini spacecraft narrow-angle camera made this image on May 21, 2011 at a distance of approximately 1.4 million miles (2.3 million kilometers) from Titan. Credit: NASA/JPL-Caltech/Space Science Institute

New research from NASA-funded scientists attempts to estimate how long this factory has been operating. The results are presented as two papers appearing in the April 20 issue of the Astrophysical Journal.

These papers used data from two instruments onboard NASA's Cassini spacecraft in orbit around Saturn and one instrument on the European Space Agency's Huygens probe that landed on Titan’s surface in January, 2005. All three instruments were built at NASA's Goddard Space Flight Center in Greenbelt, Md. A paper led by Conor Nixon of the University of Maryland, College Park uses infrared signatures (spectra) of methane from Cassini's composite infrared spectrometer to estimate how much "heavy" methane containing rare isotopes is present in Titan's atmosphere.

Isotopes are versions of an element with different weights, or masses. For example, carbon 13 is a heavier (and rare) version of the most common type of carbon, called carbon 12. Occasionally, a carbon-13 atom replaces a carbon-12 atom in a methane molecule. Because methane made with carbon 12 is slightly lighter, the chemical reactions that convert it to more complex hydrocarbons happen a bit faster. This means carbon-12 methane gets used up at a slightly faster rate than heavy carbon-13 methane, so the concentration of heavy methane in Titan's atmosphere increases slowly.

By modeling how the concentration of heavy methane changes over time, the scientists predicted how long Titan's chemical factory has been running.

"Under our baseline model assumptions, the methane age is capped at 1.6 billion years, or about a third the age of Titan itself," said Nixon, who is stationed at NASA Goddard. "However, if methane is also allowed to escape from the top of the atmosphere, as some previous work has suggested, the age must be much shorter - perhaps only 10 million years - to be compatible with observations." Both of these scenarios assume that methane entered the atmosphere in one burst of outgassing, probably from the restructuring of Titan's interior as heavier materials sank towards the center and lighter ones rose toward the surface.

"However, if the methane has been continuously replenished from a source then its isotopes would always appear 'fresh' and we can't restrict the age in our model," adds Nixon. Possible sources include methane clathrates, basically a methane molecule inside a "cage" or lattice of ice molecules. Methane clathrates are found in the frigid depths of Earth's oceans, and some scientists think there could be an ocean of liquid water mixed with ammonia (acting as antifreeze) beneath Titan's water-ice crust. If this is so, methane might be released from its clathrate cages during the eruptions of proposed 'cryovolcanoes' of water-ammonia slurry, or more simply could slowly seep out through fractures in the crust.

The second paper by Kathleen Mandt of the Southwest Research Institute, San Antonio, Texas, and colleagues also models the time-evolution of methane. In this work, the concentration of the heavy methane is determined from measurements by Cassini's ion and neutral mass spectrometer, which counts molecules in the atmosphere of different masses (weights). Measurements made by the Huygens gas chromatograph mass spectrometer, which also counts molecules of different masses, were used to constrain the impact of escape on the heavy methane in the atmosphere.

"We compute that, even if methane has been replenished from the interior over time to match or exceed the amounts fed into the atmospheric chemical factory, the process must have been running for a maximum of one billion years," said Mandt. "If the process had started any earlier, we would see a build-up of methane in the lakes on the surface and in the atmosphere beyond what is observed today."

Together these papers add important new perspectives and constraints on the history of Titan's methane atmosphere, confirming that it must have formed long after Titan itself. Previous work considering the evolution of Titan's interior has predicted the last major methane eruption occurred 350 million to 1.35 billion years ago, while crater counting has put the age of the current surface at 200 million to one billion years. (Crater counting works on the principle that an older surface has more craters, just as the longer you're in a paintball game, the more hits you'll get.)

The present work for the first time estimates the methane age from the atmosphere itself, at less than one billion years, considering both papers.

This research was supported by the NASA Cassini Mission and the NASA Cassini Data Analysis Program grant NNX09AK55G. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington.

All of Cassini's raw images can be seen at http://saturn.jpl.nasa.gov/photos/raw/ .

For more information about the Cassini-Huygens mission visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov .

Bill Steigerwald
NASA's Goddard Space Flight Center, Greenbelt, Md.
William.A.Steigerwald@nasa.gov

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/cassini/whycassini/factory20120420.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>