Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Releases IRIS Footage of X-class Flare

18.09.2014

On Sept. 10, 2014, NASA's newest solar observatory, the Interface Region Imaging Spectrograph, or IRIS, mission joined other telescopes to witness an X-class flare – an example of one of the strongest solar flares -- on the sun. Combing observations from more than one telescope helps create a much more complete picture of such events on our closest star. Watch the movie to see how the flare appears different through the eyes of IRIS than it does through NASA's Solar Dynamics Observatory.

The movie shows IRIS imagery focused in on material at around 60,000 Kelvin (107,500 F), which highlights a low level of the sun's atmosphere, called the transition region. IRIS can zoom in on the transition region with unprecedented resolution.


Two views of an X-class solar flare on Sept. 10, 2014. IRIS focuses on the lower regions of the sun's atmosphere, while the SDO imagery shows a region that is hotter and typically slightly above that.

Image Credit: NASA/LMSAL/Wiessinger

The imagery on the right side is from SDO. The movie shows material at about 600,000 Kelvin (1,080,000 F), which highlights material typically higher up in the atmosphere in what's called the corona, (Although in a dynamic event such as a flare, hot and cold material often occur at the same heights.)

The IRIS video clearly shows a dark sunspot in the upper right, a magnetically complex  region observed on the sun's surface. SDO, on the other hand, shows what's happening above that – giant magnetic loops rise up off the surface. 

As the flare begins, crisp bright lines show up moving across the IRIS data, showing where material begins to be heated with the onset of the flare. Some of this imagery appears in the SDO side as well, but so do many other features and brightenings.  It is only by comparing the two movies that one can tease out what's happening at the lower temperatures – likely to be in the lower atmosphere – versus what is happening higher up.

IRIS must commit to pointing at certain sections of the sun at least a day in advance, so catching these eruptions in the act involves educated guesses and a little bit of luck. So far, IRIS has seen two X-class flares, and numerous M-class flares – X-class flares are the strongest flares, while M-class are a tenth as strong. These observations have offered some of the first comprehensive observations of what happens in the transition region during a flare.

Lockheed Martin’s Solar & Astrophysics Laboratory in Palo Alto, California, designed and manages the IRIS mission. NASA's Ames Research Center in Moffett Field, California, provides mission operations and ground data systems. NASA's Goddard Space Flight Center, in Greenbelt, Maryland, manages the Explorer Program for NASA's Science Mission Directorate in Washington, D.C.

Related Links

  For more information about IRIS, visit:

http://www.nasa.gov/iris


  For more on the Sept. 10, 2014 flare, visit:

http://www.nasa.gov/content/goddard/significant-flare-surges-off-the-sun/


  To download the high-resolution video, visit:

http://svs.gsfc.nasa.gov/vis/a010000/a011600/a011651/
 

Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md
.

Susan Hendrix | Eurek Alert!

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>