Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Protects its super heroes from space weather

17.08.2017

It's not a bird or a plane but it might be a solar storm. We like to think of astronauts as our super heroes, but the reality is astronauts are not built like Superman who gains strength from the sun. In fact, much of the energy radiating from the sun is harmful to us mere mortals.

Outside Earth's protective magnetic field and atmosphere, the ionizing radiation in space will pose a serious risk to astronauts as they travel to Mars. High-energy galactic cosmic rays (GCRs) which are remnants from supernovas and solar storms like solar particle events (SPEs) and coronal mass ejections (CMEs) from the sun can cause harm to the body and spacecraft. These are all components of space weather.


NASA's Human Research Program aims to mitigate the harmful effects of the space radiation environment on astronaut health outside of the relative protection of the Earth's magnetosphere.

Credit: NASA/SOHO

When astronauts travel in space they can't see or even feel radiation. However, NASA's Human Research Program (HRP) is studying the effects radiation plays on the human body and developing ways to monitor and protect against this silent hazard.

"Dosimeters and modeling techniques are used to determine how much energy is deposited in the space explorer's bodies along with inflight tools to try to estimate what type of biological effects they might be experiencing," said Tony Slaba, Ph.D., NASA research physicist.

"Solar storms can cause acute radiation sickness during space flight which has to be dealt with in real time. There's also an additional risk from exposure to GCRs which may cause central nervous system effects and delayed effects related to cancer and cardiovascular disease after the mission."

While shielding strategies for GCRs remain difficult due to their extremely high energies, pharmaceutical countermeasures may be more effective than thick shielding to protect the crew from GCRs. NASA also is developing space weather forecasting tools to provide advance warning of SPEs. Solar protons can be easily shielded against for protection.

The HRP is performing a variety of research to identify and validate biological countermeasures for protection. It researches an array of shielding design strategies that include ways to mitigate exposure from all forms of space weather. Historical worst and best case space weather scenarios are used to drive designs. Habitat design and overall vehicle optimization is being investigated to reduce the inflight risks from solar storms. These design strategies, coupled with the human research on the biological effects of space radiation will allow astronauts to travel farther from Earth than ever before.

As NASA embarks on the next big journey to send humans to Mars, it is imperative to protect our super heroes against the dangers of space. By implementing the best methods and technologies against the villain of space radiation, the journey may not be faster than a speeding bullet, but it will be safer.

###

NASA's Human Research Program (HRP) is dedicated to discovering the best methods and technologies to support safe, productive human space travel. HRP enables space exploration by reducing the risks to astronaut health and performance using ground research facilities, the International Space Station, and analog environments. This leads to the development and delivery of a program focused on: human health, performance, and habitability standards; countermeasures and risk mitigation solutions; and advanced habitability and medical support technologies. HRP supports innovative, scientific human research by funding more than 300 research grants to respected universities, hospitals and NASA centers to over 200 researchers in more than 30 states.

Amy Blanchett
Laurie Abadie
NASA Human Research Strategic Communications

https://youtu.be/sK-IDNBPIM4

Amy Blanchett | EurekAlert!

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>