Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA prepares to launch next Earth-observing satellite mission

21.01.2011
NASA's newest Earth-observing research mission is nearing launch. The Glory mission will improve our understanding of how the sun and tiny atmospheric particles called aerosols affect Earth's climate. Glory also will extend a legacy of long-term solar measurements needed to address key uncertainties about climate change.

Glory is scheduled to launch from Vandenberg Air Force Base in California on Feb. 23 at 5:09 a.m. EST. It will join a fleet called the Afternoon Constellation or "A-train" of satellites. This group of other Earth-observing satellites, including NASA's Aqua and Aura spacecraft, flies in tight formation.

"Glory is going to help scientists tackle one of the major uncertainties in climate change predictions identified by the United Nation's Intergovernmental Panel on Climate Change: the influence of aerosols on the energy balance of our planet," said Michael Freilich, director of NASA's Earth Science Division in the Science Mission Directorate at the agency's headquarters in Washington. "This mission also marks the first satellite launch under President Obama's climate initiative that will advance the United States' contribution to cutting-edge and policy-relevant climate change science."

Originally confirmed in 2005, Glory has been developed by a team of engineers and scientists at several government, industry and academic institutions across the country. The Glory spacecraft arrived at Vandenberg on Jan. 11 after a cross-country road trip from Orbital Sciences Corporation in Dulles, Va.

"The spacecraft is in place at the launch and all of the post-shipment inspections and electrical tests have been completed," said Bryan Fafaul, Glory project manager at NASA's Goddard Space Flight Center in Greenbelt, Md. The spacecraft will be mated to Orbital's Taurus XL 3110 rocket next month.

Glory will carry new technology designed to unravel some of the most complex elements of the Earth system. The mission carries two primary instruments, the Aerosol Polarimetry Sensor (APS) and the Total Irradiance Monitor (TIM). APS will improve measurement of aerosols, the airborne particles that can influence climate by reflecting and absorbing solar radiation and modifying clouds and precipitation.

TIM will extend a decades-long data record of the solar energy striking the top of Earth's atmosphere, or total solar irradiance. APS will collect data at nine different wavelengths, from the visible to short-wave infrared, giving scientists a much-improved understanding of aerosols. The instrument, NASA's first Earth-orbiting polarimeter, will help scientists distinguish between natural and human-produced aerosols. The information will be used to refine global climate models and help scientists determine how our planet is responding to human activities.

The TIM instrument will maintain and improve upon a 32-year record of total solar irradiance, a value that fluctuates slightly as the sun cycles through periods of varying intensity approximately every 11 years. While scientists have concluded that solar variability is not the main cause of the warming observed on Earth in recent decades, the sun has historically caused long-term climate changes. Having a baseline of the solar energy that reaches Earth gives us a way to evaluate future climate changes. Better measurements of total solar irradiance give scientists another way to test their climate models and understand the sun's longer cyclical changes and how they may impact the climate.

Glory will fly in a low-Earth orbit at an altitude of 438 miles, about the distance from Boston to Washington. After launch, mission operators will conduct verification tests for 30 days and then begin to collect data for at least three years.

Glory's Taurus launch rocket also will carry into orbit a secondary payload: NASA's Educational Launch of Nanosatellite, or ELaNA, mission. This mission will put three small research satellites, or CubeSats, into orbit for Montana State University, the University of Colorado and a consortium of state universities called Kentucky Space.

Glory is managed by Goddard for NASA's Science Mission Directorate in Washington. Launch management is provided by NASA's Launch Services Program at the agency's Kennedy Space Center in Florida.

Orbital is responsible for Glory's design, manufacture, payload integration, and testing, as well as spacecraft operations at its Mission Operations Complex in Dulles, Va. The Laboratory for Atmospheric and Space Physics at the University of Colorado at Boulder provided and will operate the TIM instrument. Raytheon Space and Airborne Systems in El Segundo, Calif., provided the APS instrument, which will be operated by Goddard's Institute for Space Studies in New York.

For more information about Glory, visit: http://www.nasa.gov/glory

Sarah Dewitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/glory

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>