Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-led Study Sees Titan Glowing at Dusk and Dawn

23.10.2014

New maps of Saturn’s moon Titan reveal large patches of trace gases shining brightly near the north and south poles. These regions are curiously shifted off the poles, to the east or west, so that dawn is breaking over the southern region while dusk is falling over the northern one.

The pair of patches was spotted by a NASA-led international team of researchers investigating the chemical make-up of Titan’s atmosphere.


High in the atmosphere of Titan, large patches of two trace gases glow near the north pole, on the dusk side of the moon, and near the south pole, on the dawn side. Brighter colors indicate stronger signals from the two gases, HNC (left) and HC3N (right); red hues indicate less pronounced signals.

Image Credit: NRAO/AUI/NSF

“This is an unexpected and potentially groundbreaking discovery,” said Martin Cordiner, an astrochemist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead author of the study. “These kinds of east-to-west variations have never been seen before in Titan’s atmospheric gases. Explaining their origin presents us with a fascinating new problem.”

The mapping comes from observations made by the Atacama Large Millimeter/submillimeter Array (ALMA), a network of high-precision antennas in Chile. At the wavelengths used by these antennas, the gas-rich areas in Titan’s atmosphere glowed brightly. And because of ALMA’s sensitivity, the researchers were able to obtain spatial maps of chemicals in Titan’s atmosphere from a “snapshot” observation that lasted less than three minutes.

Titan’s atmosphere has long been of interest because it acts as a chemical factory, using energy from the sun and Saturn’s magnetic field to produce a wide range of organic, or carbon-based, molecules. Studying this complex chemistry may provide insights into the properties of Earth’s very early atmosphere, which may have shared many chemical characteristics with present-day Titan.

In this study, the researchers focused on two organic molecules, hydrogen isocyanide (HNC) and cyanoacetylene (HC3N), that are formed in Titan’s atmosphere. At lower altitudes, the HC3N appears concentrated above Titan’s north and south poles. These findings are consistent with observations made by NASA’s Cassini spacecraft, which has found a cloud cap and high concentrations of some gases over whichever pole is experiencing winter on Titan.

The surprise came when the researchers compared the gas concentrations at different levels in the atmosphere. At the highest altitudes, the gas pockets appeared to be shifted away from the poles. These off-pole locations are unexpected because the fast-moving winds in Titan’s middle atmosphere move in an east–west direction, forming zones similar to Jupiter’s bands, though much less pronounced. Within each zone, the atmospheric gases should, for the most part, be thoroughly mixed.

The researchers do not have an obvious explanation for these findings yet.

“It seems incredible that chemical mechanisms could be operating on rapid enough timescales to cause enhanced 'pockets' in the observed molecules,” said Conor Nixon, a planetary scientist at Goddard and a coauthor of the paper, published online today in the Astrophysical Journal Letters. “We would expect the molecules to be quickly mixed around the globe by Titan’s winds.”

At the moment, the scientists are considering a number of potential explanations, including thermal effects, previously unknown patterns of atmospheric circulation, or the influence of Saturn’s powerful magnetic field, which extends far enough to engulf Titan.

Further observations are expected to improve the understanding of the atmosphere and ongoing processes on Titan and other objects throughout the solar system.  

NASA’s Astrobiology Program supported this work through a grant to the Goddard Center for Astrobiology, a part of the NASA Astrobiology Institute. Additional funding came from NASA’s Planetary Atmospheres and Planetary Astronomy programs. ALMA, an international astronomy facility, is funded in Europe by the European Southern Observatory, in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada and the National Science Council of Taiwan, and in East Asia by the National Institutes of Natural Sciences of Japan in cooperation with the Academia Sinica in Taiwan. 

Nancy Neal-Jones / Elizabeth Zubritsky
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-0039 / 301-614-5438
nancy.n.jones@nasa.gov / elizabeth.a.zubritsky@nasa.gov

Liz Zubritsky | Eurek Alert!

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>