Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Grant Supports New York Center for Astrobiology in Search for Conditions of Life in the Universe

21.07.2010
The New York Center for Astrobiology will widen the scope of its search for the building blocks of life beyond Earth with the help of a new NASA grant. Based at Rensselaer Polytechnic Institute, the center is devoted to investigating the origins of life on Earth and the conditions that lead to formation of habitable planets in our own and other solar systems.

“We are looking for the conditions of life, rather than life itself,” said Douglas Whittet, director of the New York Center for Astrobiology and a Rensselaer professor of physics, applied physics, and astronomy. The center opened in 2008 with support from NASA.

One interesting finding from its research thus far is that stars aid in the process of forming the more complex matter found on planets and in life.

“You need energy to drive the chemistry. A star itself can cook simple molecules into something more interesting,” Whittet said.

The new four-year $630,000 grant will allow the center to expand operations.

“It will allow us to support some more collaborations, which in turn lets us acquire and analyze more data,” Whittet said.

Researchers at the center study the chemical, physical, and geological conditions on Earth that gave birth to life. That information, in turn, is used to search for similar conditions elsewhere – on Mars and other bodies in our solar system, and on planets orbiting other stars.

“A lot of organic molecules present on Earth may have been delivered shortly after it was formed. The evidence for this comes from meteorites, which contain amino acids,” Whittet said. “We aim to find out what was happening in the solar system 4.5 billion years ago when it was formed. When and how was this matter synthesized, and how common is it?”

The researchers look for clues within young solar systems, where stars are surrounded by molecular clouds or pre-planetary disks that have not yet coalesced into planets.

The key to their research is spectroscopy – or light signature – of the clouds and disks. The early universe was composed of hydrogen and helium, from which other elements were formed, and later combined into molecules in interstellar clouds. By examining the light signature of the material, researchers can determine which chemicals are present in a particular cloud or pre-planetary disk.

“You use the star as a source of radiation. The material between you and the star is absorbing some of it. We look at the absence of light caused by the material,” Whittet said.

Whittet said researchers are currently analyzing data gathered from the Spitzer Space Telescope – an infrared telescope orbiting the sun that gathered data from 2003 to 2009.

“There’s a huge archive of data that’s being analyzed, and the grant will afford us access to more of that material,” Whittet said.

Already that material has yielded the insight that stars play a role in the creation of more complex matter. Whittet explained that molecular clouds around stars mature into pre-planetary disks and then planets. Complex matter is found in increasing abundance as the stages progress.

“Organic molecules such as hydrocarbons and alcohols are more common in pre-planetary disks compared with molecular clouds,” Whittet said. “These molecules form with the help of energy from the star.”

A less promising finding – at least from the standpoint of finding life elsewhere in the universe – is the relative scarcity of complex hydrocarbons.

“The most common material we’ve found is carbon dioxide, which is not very useful in making life,” Whittet said. “It would be a lot more interesting if the carbon were going into hydrocarbons, which are a stepping point to much more complicated molecules.”

Mary Martialay | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>