Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Goddard Planetary Instruments Score a Hat Trick

06.12.2013
Planetary instruments from NASA’s Goddard Space Flight Center in Greenbelt, Md., hit the trifecta on Dec. 4, running three experiments of the same kind at different places in space.

The instruments, all flying on NASA missions, are mass spectrometers, designed to take in atmospheric, rock or soil samples and identify particular molecules in them. The investigations lined up because of the operating schedules for the three, which must take turns with other instruments on their respective spacecraft.


Three mass spectrometers built at Goddard were operating on the same day at the moon, on Mars and en route to Mars. Image Credit: NASA

“At the moon and Mars and part way in between, we had three mass spectrometers happily operating in their other-worldly environments or being checked out for the first time in space on the same day,” said Paul Mahaffy, the principal investigator for the instruments.

Goddard’s Planetary Environments Lab, headed by Mahaffy, built all three instruments. The mass spectrometers identify gases in atmospheric samples or gases that get released from rock or soil samples as they are processed. To pick out individual components in a sample, an electron beam is used to break the large molecules into smaller fragments. Then high-frequency electric fields are applied to the resulting mixture to sort the fragments by mass and electric charge, producing a fingerprint of the molecules present.

Stationed at the moon was NASA’s Lunar Atmosphere and Dust Environment Explorer, or LADEE, which entered an equatorial orbit on Nov. 20 and began science operations the following day. On Dec. 4, the mission’s Neutral Mass Spectrometer was checking out the moon’s thin atmosphere. The instrument will continue to collect samples over multiple orbits with the moon in different space environments.

En route to Mars was NASA’s Mars Atmosphere and Volatile Evolution, or MAVEN, mission. Launched on Nov. 18, the spacecraft is in the early cruise phase and is scheduled to arrive at the Red Planet in September 2014. The mission’s Neutral Gas and Ion Mass Spectrometer was turned on for the first time on Dec. 4 and measured calibration gases in the instrument.

Upon the spacecraft’s arrival at Mars, the instrument will study the planet’s fragile upper atmosphere, examining its composition and determining how quickly some of the gases are escaping into space over time. This information will help scientists understand what the Martian atmosphere looked like billions of years ago and how most of it has been lost since then.

On the surface of Mars was NASA’s Mars Science Laboratory’s Curiosity rover, which carries the Sample Analysis at Mars (SAM) instrument suite. SAM has been analyzing multiple samples of the atmosphere and soils and rocks to help scientists understand how habitable Mars was in the past.

“With these studies, mass spectrometry is helping us piece together the histories of the moon and Mars and offers a vision of their futures,” said Mahaffy. “It’s a perfect example of how invaluable these instruments are for space science.”

MAVEN's principal investigator is based at the University of Colorado Laboratory for Atmospheric and Space Physics in Boulder. Goddard manages the MAVEN mission. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., built the Curiosity rover and manages the Mars Science Laboratory Project. NASA's Ames Research Center at Moffett Field in California manages the LADEE mission.

By Elizabeth Zubritsky

Liz Zubritsky | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/goddard-planetary-instruments-score-a-hat-trick/#.UqDzAOKFdnk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>