Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Finds Friction from Tides Could Help Distant Earths Survive, and Thrive

10.07.2014

As anybody who has started a campfire by rubbing sticks knows, friction generates heat. Now, computer modeling by NASA scientists shows that friction could be the key to survival for some distant Earth-sized planets traveling in dangerous orbits.

The findings are consistent with observations that Earth-sized planets appear to be very common in other star systems. Although heat can be a destructive force for some planets, the right amount of friction, and therefore heat, can be helpful and perhaps create conditions for habitability.


Planets in eccentric orbits can experience powerful tidal forces. A planet covered by a very thick ice shell (left) is springy enough to flex a great deal, generating a lot of internal friction and heat. Some terrestrial planets (right) also will flex, especially with partially molten inner layers.

Image Credit: NASA's Goddard Space Flight Center

“We found some unexpected good news for planets in vulnerable orbits,” said Wade Henning, a University of Maryland scientist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new study. “It turns out these planets will often experience just enough friction to move them out of harm’s way and into safer, more-circular orbits more quickly than previously predicted.”

Simulations of young planetary systems indicate that giant planets often upset the orbits of smaller inner worlds. Even if those interactions aren’t immediately catastrophic, they can leave a planet in a treacherous eccentric orbit – a very elliptical course that raises the odds of crossing paths with another body, being absorbed by the host star, or getting ejected from the system.

Another potential peril of a highly eccentric orbit is the amount of tidal stress a planet may undergo as it draws very close to its star and then retreats away. Near the star, the gravitational force is powerful enough to deform the planet, while in more distant reaches of the orbit, the planet can ease back into shape. This flexing action produces friction, which generates heat. In extreme cases, tidal stress can produce enough heat to liquefy the planet.

In this new study, available online in the July 1, 2014, issue of the Astrophysical Journal, Henning and his colleague Terry Hurford, a planetary scientist at Goddard, explored the effects of tidal stresses on planets that have multiple layers, such as rocky crust, mantle or iron core.

One conclusion of the study is that some planets could move into a safer orbit about 10 to 100 times faster than previously expected – in as a little as a few hundred thousand years, instead of the more typical rate of several million years. Such planets would be driven close to the point of melting or, at least, would have a nearly melted layer, similar to the one right below Earth’s crust. Their interior temperatures could range from moderately warmer than our planet is today up to the point of having modest-sized magma oceans. 

The transition to a circular orbit would be speedy because an almost-melted layer would flex easily, generating a lot of friction-induced heat. As the planet threw off that heat, it would lose energy at a fast rate and relax quickly into a circular orbit. (Later, tidal heating would turn off, and the planet's surface could become safe to walk on.)

In contrast, a world that had completely melted would be so fluid that it would produce little friction. Before this study, that is what researchers expected to happen to planets undergoing strong tidal stresses.

Cold, stiff planets tend to resist the tidal stress and release energy very slowly. In fact, Henning and Hurford found that many of them actually generate less friction than previously thought. This may be especially true for planets farther from their stars. If these worlds are not crowded by other bodies, they may be stable in their eccentric orbits for a long time.

“In this case, the longer, non-circular orbits could increase the ‘habitable zone,’ because the tidal stress will remain an energy source for longer periods of time,” said Hurford. “This is great for dim stars or ice worlds with subsurface oceans."

Surprisingly, another way for a terrestrial planet to achieve high amounts of heating is to be covered in a very thick ice shell, similar to an extreme “snowball Earth.” Although a sheet of ice is a slippery, low-friction surface, an ice layer thousands of miles thick would be very springy. A shell like this would have just the right properties to respond strongly to tidal stress, generating a lot of heat. (The high pressures inside these planets could prevent all but the topmost layers from turning into liquid water.)

The researchers found that the very responsive layers of ice or almost-melted material could be relatively thin, just a few hundred miles deep in some cases, yet still dominate the global behavior.

The team modeled planets that are the size of Earth and up to two-and-a-half times larger. Henning added that superEarths – planets at the high end of this size range – likely would experience stronger tidal stresses and potentially could benefit more from the resulting friction and heating.

Now that the researchers have shown the importance of the contributions of different layers of a planet, the next step is to investigate how layers of melted material flow and change over time. 

Elizabeth Zubritsky

NASA's Goddard Space Flight Center

Elizabeth Zubritsky | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/friction-from-tides-could-help-distant-earths-survive-and-thrive/

Further reports about: Earth-sized planets NASA Tides heating orbits planetary systems

More articles from Physics and Astronomy:

nachricht Rosetta’s comet contains ingredients for life
30.05.2016 | Universität Bern

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>