Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Finds Friction from Tides Could Help Distant Earths Survive, and Thrive

10.07.2014

As anybody who has started a campfire by rubbing sticks knows, friction generates heat. Now, computer modeling by NASA scientists shows that friction could be the key to survival for some distant Earth-sized planets traveling in dangerous orbits.

The findings are consistent with observations that Earth-sized planets appear to be very common in other star systems. Although heat can be a destructive force for some planets, the right amount of friction, and therefore heat, can be helpful and perhaps create conditions for habitability.


Planets in eccentric orbits can experience powerful tidal forces. A planet covered by a very thick ice shell (left) is springy enough to flex a great deal, generating a lot of internal friction and heat. Some terrestrial planets (right) also will flex, especially with partially molten inner layers.

Image Credit: NASA's Goddard Space Flight Center

“We found some unexpected good news for planets in vulnerable orbits,” said Wade Henning, a University of Maryland scientist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new study. “It turns out these planets will often experience just enough friction to move them out of harm’s way and into safer, more-circular orbits more quickly than previously predicted.”

Simulations of young planetary systems indicate that giant planets often upset the orbits of smaller inner worlds. Even if those interactions aren’t immediately catastrophic, they can leave a planet in a treacherous eccentric orbit – a very elliptical course that raises the odds of crossing paths with another body, being absorbed by the host star, or getting ejected from the system.

Another potential peril of a highly eccentric orbit is the amount of tidal stress a planet may undergo as it draws very close to its star and then retreats away. Near the star, the gravitational force is powerful enough to deform the planet, while in more distant reaches of the orbit, the planet can ease back into shape. This flexing action produces friction, which generates heat. In extreme cases, tidal stress can produce enough heat to liquefy the planet.

In this new study, available online in the July 1, 2014, issue of the Astrophysical Journal, Henning and his colleague Terry Hurford, a planetary scientist at Goddard, explored the effects of tidal stresses on planets that have multiple layers, such as rocky crust, mantle or iron core.

One conclusion of the study is that some planets could move into a safer orbit about 10 to 100 times faster than previously expected – in as a little as a few hundred thousand years, instead of the more typical rate of several million years. Such planets would be driven close to the point of melting or, at least, would have a nearly melted layer, similar to the one right below Earth’s crust. Their interior temperatures could range from moderately warmer than our planet is today up to the point of having modest-sized magma oceans. 

The transition to a circular orbit would be speedy because an almost-melted layer would flex easily, generating a lot of friction-induced heat. As the planet threw off that heat, it would lose energy at a fast rate and relax quickly into a circular orbit. (Later, tidal heating would turn off, and the planet's surface could become safe to walk on.)

In contrast, a world that had completely melted would be so fluid that it would produce little friction. Before this study, that is what researchers expected to happen to planets undergoing strong tidal stresses.

Cold, stiff planets tend to resist the tidal stress and release energy very slowly. In fact, Henning and Hurford found that many of them actually generate less friction than previously thought. This may be especially true for planets farther from their stars. If these worlds are not crowded by other bodies, they may be stable in their eccentric orbits for a long time.

“In this case, the longer, non-circular orbits could increase the ‘habitable zone,’ because the tidal stress will remain an energy source for longer periods of time,” said Hurford. “This is great for dim stars or ice worlds with subsurface oceans."

Surprisingly, another way for a terrestrial planet to achieve high amounts of heating is to be covered in a very thick ice shell, similar to an extreme “snowball Earth.” Although a sheet of ice is a slippery, low-friction surface, an ice layer thousands of miles thick would be very springy. A shell like this would have just the right properties to respond strongly to tidal stress, generating a lot of heat. (The high pressures inside these planets could prevent all but the topmost layers from turning into liquid water.)

The researchers found that the very responsive layers of ice or almost-melted material could be relatively thin, just a few hundred miles deep in some cases, yet still dominate the global behavior.

The team modeled planets that are the size of Earth and up to two-and-a-half times larger. Henning added that superEarths – planets at the high end of this size range – likely would experience stronger tidal stresses and potentially could benefit more from the resulting friction and heating.

Now that the researchers have shown the importance of the contributions of different layers of a planet, the next step is to investigate how layers of melted material flow and change over time. 

Elizabeth Zubritsky

NASA's Goddard Space Flight Center

Elizabeth Zubritsky | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/friction-from-tides-could-help-distant-earths-survive-and-thrive/

Further reports about: Earth-sized planets NASA Tides heating orbits planetary systems

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>