Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Developing Comet Harpoon for Sample Return

14.12.2011
The best way to grab a sample of a rotating comet that is racing through the inner solar system at up to 150,000 miles per hour while spewing chunks of ice, rock and dust may be to avoid the risky business of landing on it.

Instead, researchers want to send a spacecraft to rendezvous with a comet, then fire a harpoon to rapidly acquire samples from specific locations with surgical precision while hovering above the target. Using this "standoff" technique would allow samples to be collected even from areas that are much too rugged or dangerous to permit the landing and safe operation of a spacecraft.

Scientists at NASA's Goddard Space Flight Center in Greenbelt, Md. are in the early stages of working out the best design for a sample-collecting comet harpoon. In a lab the size of a large closet stands a metal ballista (large crossbow) nearly six feet tall, with a bow made from a pair of truck leaf springs and a bow string made of steel cable 1/2 inch thick.

The ballista is positioned to fire vertically downward into a bucket of target material. For safety, it's pointed at the floor, because it could potentially launch test harpoon tips about a mile if it was angled upwards. An electric winch mechanically pulls the bow string back to generate a precise level of force, up to 1,000 pounds, firing projectiles to velocities upwards of 100 feet per second.

Donald Wegel of NASA Goddard, lead engineer on the project, places a test harpoon in the bolt carrier assembly, steps outside the lab and moves a heavy wooden safety door with a thick plexiglass window over the entrance. After dialing in the desired level of force, he flips a switch and, after a few-second delay, the crossbow fires, launching the projectile into a 55-gallon drum full of cometary simulant -- sand, salt, pebbles or a mixture of each. The ballista produces a uniquely impressive thud upon firing, somewhere between a rifle and a cannon blast.

"We had to bolt it to the floor, because the recoil made the whole testbed jump after every shot," said Wegel. "We're not sure what we'll encounter on the comet – the surface could be soft and fluffy, mostly made up of dust, or it could be ice mixed with pebbles, or even solid rock. Most likely, there will be areas with different compositions, so we need to design a harpoon that's capable of penetrating a reasonable range of materials. The immediate goal though, is to correlate how much energy is required to penetrate different depths in different materials. What harpoon tip geometries penetrate specific materials best? How does the harpoon mass and cross section affect penetration? The ballista allows us to safely collect this data and use it to size the cannon that will be used on the actual mission."

Comets are frozen chunks of ice and dust left over from our solar system's formation. As such, scientists want a closer look at them for clues to the origin of planets and ultimately, ourselves. "One of the most inspiring reasons to go through the trouble and expense of collecting a comet sample is to get a look at the 'primordial ooze' – biomolecules in comets that may have assisted the origin of life," says Wegel.

Scientists at the Goddard Astrobiology Analytical Laboratory have found amino acids in samples of comet Wild 2 from NASA’s Stardust mission, and in various carbon-rich meteorites. Amino acids are the building blocks of proteins, the workhorse molecules of life, used in everything from structures like hair to enzymes, the catalysts that speed up or regulate chemical reactions. The research gives support to the theory that a "kit" of ready-made parts created in space and delivered to Earth by meteorite and comet impacts gave a boost to the origin of life.

Although ancient comet impacts could have helped create life, a present-day hit near a populated region would be highly destructive, as a comet's large mass and high velocity would make it explode with many times the force of a typical nuclear bomb. One plan to deal with a comet headed towards Earth is to deflect it with a large – probably nuclear – explosion. However, that might turn out to be a really bad idea. Depending on the comet's composition, such an explosion might just fragment it into many smaller pieces, with most still headed our way. It would be like getting hit with a shotgun blast instead of a rifle bullet. So the second major reason to sample comets is to characterize the impact threat, according to Wegel. We need to understand how they're made so we can come up with the best way to deflect them should any have their sights on us.

"Bringing back a comet sample will also let us analyze it with advanced instruments that won't fit on a spacecraft or haven't been invented yet," adds Dr. Joseph Nuth, a comet expert at NASA Goddard and lead scientist on the project.

Of course, there are other ways to gather a sample, like using a drill. However, any mission to a comet has to overcome the challenge of operating in very low gravity. Comets are small compared to planets, typically just a few miles across, so their gravity is correspondingly weak, maybe a millionth that of Earth, according to Nuth. "A spacecraft wouldn't actually land on a comet; it would have to attach itself somehow, probably with some kind of harpoon. So we figured if you have to use a harpoon anyway, you might as well get it to collect your sample," says Nuth.

This is a photo of a prototype harpoon tip (right) and sample collection chamber (left). Credit: NASA/Rob Andreoli
Full-resolution copy
Right now, the team is working out the best tip design, cross-section, and explosive powder charge for the harpoon, using the crossbow to fire tips at various speeds into different materials like sand, ice, and rock salt. They are also developing a sample collection chamber to fit inside the hollow tip. "It has to remain reliably open as the tip penetrates the comet's surface, but then it has to close tightly and detach from the tip so the sample can be pulled back into the spacecraft," says Wegel. "Finding the best design that will package into a very small cross section and successfully collect a sample from the range of possible materials we may encounter is an enormous challenge."

"You can't do this by crunching numbers in a computer, because nobody has done it before -- the data doesn't exist yet," says Nuth. "We need to get data from experiments like this before we can build a computer model. We're working on answers to the most basic questions, like how much powder charge do you need so your harpoon doesn't bounce off or go all the way through the comet. We want to prove the harpoon can penetrate deep enough, collect a sample, decouple from the tip, and retract the sample collection device."

The spacecraft will probably have multiple sample collection harpoons with a variety of powder charges to handle areas on a comet with different compositions, according to the team. After they have finished their proof-of-concept work, they plan to apply for funding to develop an actual instrument. "Since instrument development is more expensive, we need to show it works first," says Nuth.

Currently, the European Space Agency is sending a mission called Rosetta that will use a harpoon to grapple a probe named Philae to the surface of comet "67P/Churyumov-Gerasimenko" in 2014 so that a suite of instruments can analyze the regolith. "The Rosetta harpoon is an ingenious design, but it does not collect a sample," says Wegel. "We will piggyback on their work and take it a step further to include a sample-collecting cartridge. It's important to understand the complex internal friction encountered by a hollow, core-sampling harpoon."

NASA's recently-funded mission to return a sample from an asteroid, called OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security -- Regolith Explorer), will gather surface material using a specialized collector. However, the surface can be altered by the harsh environment of space. "The next step is to return a sample from the subsurface because it contains the most primitive and pristine material," said Wegel.

Both Rosetta and OSIRIS-REx will significantly increase our ability to navigate to, rendezvous with, and locate specific interesting regions on these foreign bodies. The fundamental research on harpoon-based sample retrieval by Wegel and his team is necessary so the technology is available in time for a subsurface sample return mission.

The team includes Wegel and Nuth of NASA Goddard as well as Javier Bernal, a student intern from the University of Puerto Rico at Mayaguez. The work was initially funded by Goddard's Internal Research and Development program, and sustained by NASA's Science and Engineering Collaboration, the Undergraduate Student Researcher Program, and Universities Space Research Programs.

Bill Steigerwald / Nancy Neal-Jones
NASA's Goddard Space Flight Center, Greenbelt, Md.
William.A.Steigerwald@nasa.gov / Nancy.N.Jones@nasa.gov

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/solarsystem/features/comet-harpoon.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>