Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Builds Sophisticated Earth-Observing Microwave Radiometer

06.06.2013
A NASA team delivered in May a sophisticated microwave radiometer specifically designed to overcome the pitfalls that have plagued similar Earth-observing instruments in the past.

Literally years in the making, the new radiometer, which is designed to measure the intensity of electromagnetic radiation, specifically microwaves, is equipped with one of the most sophisticated signal-processing systems ever developed for an Earth science satellite mission.


This photograph shows the SMAP propellant tank after installation at NASA's Jet Propulsion Laboratory in Pasadena, Calif. The propulsion tank was made by ATK Space Systems in Commerce, Calif. The technicians and engineers pictured are (left to right) John Shuping, Ryan Van Schilfgaarde, Bob Path and Vinh Dang. Credit: NASA JPL/Corinne Gatto Credit: NASA

Its developers at NASA’s Goddard Space Flight Center in Greenbelt, Md., shipped the instrument to NASA’s Jet Propulsion Laboratory in Pasadena, Calif., where technicians will integrate it into the agency’s Soil Moisture Active Passive spacecraft, along with a synthetic aperture radar system developed by JPL.

With the two instruments, the NASA mission will globally map soil moisture levels — data that will benefit climate models — when it begins operations a few months after its launch in late 2014. In particular, the data will give scientists the ability to discern global soil moisture levels, a crucial gauge for drought monitoring and prediction, and fill gaps in scientists’ understanding of the water cycle. Also important, it could help crack an unsolved climate mystery: the location of the places in the Earth system that store carbon dioxide.

Years in the Making

Building the new radiometer took years to accomplish and involved the development of advanced algorithms and an onboard computing system capable of crunching a deluge of data estimated at 192 million samples per second. Despite the challenges, team members believe they’ve created a state-of-the-art instrument that is expected to triumph over the data-acquisition troubles encountered by many other Earth-observing instruments.

The signal received by the instrument will have penetrated most non-forest vegetation and other barriers to gather the naturally emitted microwave signal that indicates the presence of moisture. The wetter the soil, the colder it will look in the data.

The instrument’s measurements include special features that allow scientists to identify and remove the unwanted “noise” caused by radio-frequency interference from the many Earth-based services that operate near the instrument’s microwave-frequency band. The same noise has contaminated some of the measurements gathered by the European Space Agency’s Soil Moisture and Ocean Salinity satellite and, to a certain extent, NASA’s Aquarius satellite. These spacecraft found that the noise was particularly prevalent over land.

“This is the first system in the world to do all this,” said Instrument Scientist Jeff Piepmeier, who came up with the concept at NASA Goddard.

Tuning into Earth’s Noise

Like all radiometers, the new instrument “listens” to the noises emanating from a very noisy planet.

Like a radio, it’s specifically tuned to a particular frequency band — 1.4 gigahertz or “L-Band” — that the International Telecommunication Union in Geneva, Switzerland, has set aside for radio astronomy and passive Earth remote-sensing applications. In other words, users only may listen to the “static” from which they can derive the moisture data.

Despite the prohibition, however, the band is far from pristine. “Radiometers listen to the desired signal in the spectrum band, as well as undesired signals that end up in the same band,” said Damon Bradley, a NASA Goddard digital signal-processing engineer who worked with Piepmeier and others to create the radiometer’s advanced signal-processing capabilities. As operators of SMOS quickly discovered shortly after the spacecraft’s launched in 2009, unwanted noise certainly exists in the signal.

Signal-spillover from neighboring spectrum users — particularly air-traffic control radars, cellphones and other communication devices — interferes with the microwave signal users want to gather. Just as troublesome is the interference caused by radar systems and TV and radio transmitters who violate International Telecommunication Union regulations.

As a result, the global soil-moisture maps generated by SMOS data sometimes contain blank, data-less patches. “Radio-frequency interference can be intermittent, random and unpredictable,” Bradley said. “There’s not a lot you can do about it.”

That’s why Bradley and others on Piepmeier’s team turned to technology.

New Algorithms Implemented

In 2005 Bradley, Piepmeier and other NASA Goddard engineers teamed with researchers at the University of Michigan and Ohio State University, who already had created algorithms, or step-by-step computational procedures, for mitigating radio interference. Together, they designed and tested a sophisticated digital-electronics radiometer that could use these algorithms to help scientists find and remove unwanted radio signals, thereby greatly increasing data accuracy and reducing areas where high-interference levels would impede measurements.

Conventional radiometers deal with fluctuations in microwave emissions by measuring signal power across a wide bandwidth and integrating it over a long time interval to get an average. The SMAP radiometer, however, will take those time intervals and slice them up into much shorter time intervals, making it easier to detect the rogue, human-produced RFI signals. “By chopping the signal in time, you can throw away the bad and give scientists the good,” Piepmeier said.

Another step in the radiometer’s development was the creation of a more powerful instrument processor. Because the current state-of-the-art flight processor — the RAD750 — is incapable of handling the radiometer’s expected torrent of data, the team had to develop a custom-designed processing system featuring more powerful, radiation-hardened field programmable gate arrays, which are specialized application-specific integrated circuits. These circuits are capable of withstanding the harsh, radiation-rich environment found in space.

The team then programmed these circuits to implement the University of Michigan-developed algorithms as flight signal-processing hardware. The team also replaced the detector with an analog digital converter and bolstered the overall system by creating ground-based signal-processing software to remove interference.

“SMAP has the most advanced digital processing-based radiometer ever built,” Piepmeier said. “It took years to develop the algorithms, the ground software, and the hardware. What we produced is the best L-band radiometer for Earth science.”

Lori Keesey
NASA's Goddard Space Flight Center, Greenbelt, Md.

Lori Keesey | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/smap-radiometer.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>