Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Builds Sophisticated Earth-Observing Microwave Radiometer

06.06.2013
A NASA team delivered in May a sophisticated microwave radiometer specifically designed to overcome the pitfalls that have plagued similar Earth-observing instruments in the past.

Literally years in the making, the new radiometer, which is designed to measure the intensity of electromagnetic radiation, specifically microwaves, is equipped with one of the most sophisticated signal-processing systems ever developed for an Earth science satellite mission.


This photograph shows the SMAP propellant tank after installation at NASA's Jet Propulsion Laboratory in Pasadena, Calif. The propulsion tank was made by ATK Space Systems in Commerce, Calif. The technicians and engineers pictured are (left to right) John Shuping, Ryan Van Schilfgaarde, Bob Path and Vinh Dang. Credit: NASA JPL/Corinne Gatto Credit: NASA

Its developers at NASA’s Goddard Space Flight Center in Greenbelt, Md., shipped the instrument to NASA’s Jet Propulsion Laboratory in Pasadena, Calif., where technicians will integrate it into the agency’s Soil Moisture Active Passive spacecraft, along with a synthetic aperture radar system developed by JPL.

With the two instruments, the NASA mission will globally map soil moisture levels — data that will benefit climate models — when it begins operations a few months after its launch in late 2014. In particular, the data will give scientists the ability to discern global soil moisture levels, a crucial gauge for drought monitoring and prediction, and fill gaps in scientists’ understanding of the water cycle. Also important, it could help crack an unsolved climate mystery: the location of the places in the Earth system that store carbon dioxide.

Years in the Making

Building the new radiometer took years to accomplish and involved the development of advanced algorithms and an onboard computing system capable of crunching a deluge of data estimated at 192 million samples per second. Despite the challenges, team members believe they’ve created a state-of-the-art instrument that is expected to triumph over the data-acquisition troubles encountered by many other Earth-observing instruments.

The signal received by the instrument will have penetrated most non-forest vegetation and other barriers to gather the naturally emitted microwave signal that indicates the presence of moisture. The wetter the soil, the colder it will look in the data.

The instrument’s measurements include special features that allow scientists to identify and remove the unwanted “noise” caused by radio-frequency interference from the many Earth-based services that operate near the instrument’s microwave-frequency band. The same noise has contaminated some of the measurements gathered by the European Space Agency’s Soil Moisture and Ocean Salinity satellite and, to a certain extent, NASA’s Aquarius satellite. These spacecraft found that the noise was particularly prevalent over land.

“This is the first system in the world to do all this,” said Instrument Scientist Jeff Piepmeier, who came up with the concept at NASA Goddard.

Tuning into Earth’s Noise

Like all radiometers, the new instrument “listens” to the noises emanating from a very noisy planet.

Like a radio, it’s specifically tuned to a particular frequency band — 1.4 gigahertz or “L-Band” — that the International Telecommunication Union in Geneva, Switzerland, has set aside for radio astronomy and passive Earth remote-sensing applications. In other words, users only may listen to the “static” from which they can derive the moisture data.

Despite the prohibition, however, the band is far from pristine. “Radiometers listen to the desired signal in the spectrum band, as well as undesired signals that end up in the same band,” said Damon Bradley, a NASA Goddard digital signal-processing engineer who worked with Piepmeier and others to create the radiometer’s advanced signal-processing capabilities. As operators of SMOS quickly discovered shortly after the spacecraft’s launched in 2009, unwanted noise certainly exists in the signal.

Signal-spillover from neighboring spectrum users — particularly air-traffic control radars, cellphones and other communication devices — interferes with the microwave signal users want to gather. Just as troublesome is the interference caused by radar systems and TV and radio transmitters who violate International Telecommunication Union regulations.

As a result, the global soil-moisture maps generated by SMOS data sometimes contain blank, data-less patches. “Radio-frequency interference can be intermittent, random and unpredictable,” Bradley said. “There’s not a lot you can do about it.”

That’s why Bradley and others on Piepmeier’s team turned to technology.

New Algorithms Implemented

In 2005 Bradley, Piepmeier and other NASA Goddard engineers teamed with researchers at the University of Michigan and Ohio State University, who already had created algorithms, or step-by-step computational procedures, for mitigating radio interference. Together, they designed and tested a sophisticated digital-electronics radiometer that could use these algorithms to help scientists find and remove unwanted radio signals, thereby greatly increasing data accuracy and reducing areas where high-interference levels would impede measurements.

Conventional radiometers deal with fluctuations in microwave emissions by measuring signal power across a wide bandwidth and integrating it over a long time interval to get an average. The SMAP radiometer, however, will take those time intervals and slice them up into much shorter time intervals, making it easier to detect the rogue, human-produced RFI signals. “By chopping the signal in time, you can throw away the bad and give scientists the good,” Piepmeier said.

Another step in the radiometer’s development was the creation of a more powerful instrument processor. Because the current state-of-the-art flight processor — the RAD750 — is incapable of handling the radiometer’s expected torrent of data, the team had to develop a custom-designed processing system featuring more powerful, radiation-hardened field programmable gate arrays, which are specialized application-specific integrated circuits. These circuits are capable of withstanding the harsh, radiation-rich environment found in space.

The team then programmed these circuits to implement the University of Michigan-developed algorithms as flight signal-processing hardware. The team also replaced the detector with an analog digital converter and bolstered the overall system by creating ground-based signal-processing software to remove interference.

“SMAP has the most advanced digital processing-based radiometer ever built,” Piepmeier said. “It took years to develop the algorithms, the ground software, and the hardware. What we produced is the best L-band radiometer for Earth science.”

Lori Keesey
NASA's Goddard Space Flight Center, Greenbelt, Md.

Lori Keesey | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/smap-radiometer.html

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>