Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA and NAU researchers welcome unexpected asteroid findings

20.06.2014

What seemed to be rock-solid assumptions about the nature of small asteroids may end in collections of rubble or even a cloud of dust, but in such findings lies the lure of the unexpected.

Northern Arizona University researchers David Trilling and Michael Mommert, while playing a well-defined role in the NASA Asteroid Initiative, are beginning to wonder if they have found a separate path of investigation.


An artist's conception of two possible views of asteroid 2011 MD. (Image courtesy NASA Jet Propulsion Laboratory)

The two researchers presented their findings about asteroid 2011 MD on Thursday during a NASA event updating progress on the path to capturing a small asteroid and relocating it for a closer look by astronauts in the 2020s.

The job of Trilling and Mommert was to use the infrared capabilities of the Spitzer Space Telescope to determine the size of 2011 MD, which needs to be within a narrow range for the mission to succeed. Trilling, an associate professor, explained that using infrared light is the most accurate way to determine an asteroid’s size because visible light through a traditional telescope fails to distinguish a small, highly reflective asteroid from a large one with little reflectivity.

... more about:
»Arizona »Asteroid »Mars »NASA »Space »Telescope »capturing

At around 6 meters in diameter, 2011 MD is just right. But that’s not the whole story.

“People have assumed that small asteroids are debris from collisions of larger asteroids, so those really small guys would be just single slabs of rock flying in space,” said Mommert, a post-doctoral researcher. “But we found that this one is 65 percent empty.”

The findings, which suggest a flying cluster of rocks or a cloud of dust with a solid rock at its nucleus, are similar to observations the NAU researchers published earlier this year of yet another asteroid, 2009 BD.

Trilling said long-held assumptions are yielding to something “weirder and more exotic. The first time you see it, you think, ‘Well, that’s just an anomaly.’ But two out of two, and you start to think that maybe the small ones really don’t look like everyone thought.”

The latest findings appear online today in Astrophysical Journal Letters, coinciding with the NASA presentation. And while NASA seeks to use the asteroid mission to test the technologies and capabilities needed to send astronauts to Mars, Trilling and Mommert are setting their sights elsewhere.

“Now we can go back and propose some more observation time just for the science investigation,” Trilling said. “Now we want to learn something more about the universe.”

Mommert said this is a prime opportunity to add data to a field—the study of small asteroids—that is sparsely populated.

“It’s a field that hasn’t been studied a lot because it’s really difficult to observe them and derive their physical properties,” he said. “The density of 99.9 percent of all asteroids is unknown.” He and Trilling have now added two to a single-digit list.

As far as 2011 MD is concerned, NASA will have to be satisfied with the information compiled by the full team, which includes NAU, the University of Hawaii and a number of other NASA and affiliated labs. The asteroid is about to disappear behind the sun, at least from Earth’s perspective, for the next seven years, and will not be observable again before the spacecraft to retrieve it would have to be launched.

Eric Dieterle | Eurek Alert!
Further information:
http://news.nau.edu/nasa-nau-researchers-welcome-unexpected-asteroid-findings/#.U6QFI2GKDct

Further reports about: Arizona Asteroid Mars NASA Space Telescope capturing

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>