Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA and NAU researchers welcome unexpected asteroid findings

20.06.2014

What seemed to be rock-solid assumptions about the nature of small asteroids may end in collections of rubble or even a cloud of dust, but in such findings lies the lure of the unexpected.

Northern Arizona University researchers David Trilling and Michael Mommert, while playing a well-defined role in the NASA Asteroid Initiative, are beginning to wonder if they have found a separate path of investigation.


An artist's conception of two possible views of asteroid 2011 MD. (Image courtesy NASA Jet Propulsion Laboratory)

The two researchers presented their findings about asteroid 2011 MD on Thursday during a NASA event updating progress on the path to capturing a small asteroid and relocating it for a closer look by astronauts in the 2020s.

The job of Trilling and Mommert was to use the infrared capabilities of the Spitzer Space Telescope to determine the size of 2011 MD, which needs to be within a narrow range for the mission to succeed. Trilling, an associate professor, explained that using infrared light is the most accurate way to determine an asteroid’s size because visible light through a traditional telescope fails to distinguish a small, highly reflective asteroid from a large one with little reflectivity.

... more about:
»Arizona »Asteroid »Mars »NASA »Space »Telescope »capturing

At around 6 meters in diameter, 2011 MD is just right. But that’s not the whole story.

“People have assumed that small asteroids are debris from collisions of larger asteroids, so those really small guys would be just single slabs of rock flying in space,” said Mommert, a post-doctoral researcher. “But we found that this one is 65 percent empty.”

The findings, which suggest a flying cluster of rocks or a cloud of dust with a solid rock at its nucleus, are similar to observations the NAU researchers published earlier this year of yet another asteroid, 2009 BD.

Trilling said long-held assumptions are yielding to something “weirder and more exotic. The first time you see it, you think, ‘Well, that’s just an anomaly.’ But two out of two, and you start to think that maybe the small ones really don’t look like everyone thought.”

The latest findings appear online today in Astrophysical Journal Letters, coinciding with the NASA presentation. And while NASA seeks to use the asteroid mission to test the technologies and capabilities needed to send astronauts to Mars, Trilling and Mommert are setting their sights elsewhere.

“Now we can go back and propose some more observation time just for the science investigation,” Trilling said. “Now we want to learn something more about the universe.”

Mommert said this is a prime opportunity to add data to a field—the study of small asteroids—that is sparsely populated.

“It’s a field that hasn’t been studied a lot because it’s really difficult to observe them and derive their physical properties,” he said. “The density of 99.9 percent of all asteroids is unknown.” He and Trilling have now added two to a single-digit list.

As far as 2011 MD is concerned, NASA will have to be satisfied with the information compiled by the full team, which includes NAU, the University of Hawaii and a number of other NASA and affiliated labs. The asteroid is about to disappear behind the sun, at least from Earth’s perspective, for the next seven years, and will not be observable again before the spacecraft to retrieve it would have to be launched.

Eric Dieterle | Eurek Alert!
Further information:
http://news.nau.edu/nasa-nau-researchers-welcome-unexpected-asteroid-findings/#.U6QFI2GKDct

Further reports about: Arizona Asteroid Mars NASA Space Telescope capturing

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>