Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA advances CubeSat concept for planetary exploration

20.05.2015

NASA's 'CAPEd' Crusader

Although scientists are increasingly using pint-size satellites sometimes no larger than a loaf of bread to gather data from low-Earth orbit, they have yet to apply the less-expensive small-satellite technology to observe physical phenomena far from terra firma.


Technologist Jaime Esper and his team are planning to test the stability of a prototype entry vehicle --the Micro-Reentry Capsule -- this summer during a high-altitude balloon mission from Ft. Sumner, New Mexico.

Credit: NASA/Goddard

Jaime Esper, a technologist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, however, is advancing a CubeSat concept that would give scientists that capability.

Dubbed the CubeSat Application for Planetary Entry Missions (CAPE), the concept involves the development of two modules: a service module that would propel the spacecraft to its celestial target and a separate planetary entry probe that could survive a rapid dive through the atmosphere of an extraterrestrial planet, all while reliably transmitting scientific and engineering data.

Esper and his team are planning to test the stability of a prototype entry vehicle --the Micro-Reentry Capsule (MIRCA) -- this summer during a high-altitude balloon mission from Fort Sumner, New Mexico.

'Like No Other CubeSat Mission'

"The CAPE/MIRCA concept is like no other CubeSat mission," Esper said. "It goes the extra step in delivering a complete spacecraft for carrying out scientific investigations. We are the only researchers working on a concept like this."

Under his concept, the CAPE/MIRCA spacecraft, including the service module and entry probe, would weigh less than 11 pounds (4.9 kilograms) and measure no more than 4 inches (10.1 centimeters) on a side. After being ejected from a canister housed by its mother ship, the tiny spacecraft would unfurl its miniaturized solar panels or operate on internal battery power to begin its journey to another planetary body.

Once it reached its destination, the sensor-loaded entry vehicle would separate from its service module and begin its descent through the target's atmosphere. It would communicate atmospheric pressure, temperature, and composition data to the mother ship, which then would transmit the information back to Earth.

The beauty of CubeSats is their versatility. Because they are relatively inexpensive to build and deploy, scientists could conceivably launch multiple spacecraft for multi-point sampling -- a capability currently not available with single planetary probes that are the NASA norm today. Esper would equip the MIRCA craft with accelerometers, gyros, thermal and pressure sensors, and radiometers, which measure specific gases; however, scientists could tailor the instrument package depending on the targets, Esper said.

Balloon Flight to Test Stability

The first step in realizing the concept is demonstrating a prototype of the MIRCA design during a balloon mission this summer. According to the plan, the capsule, manufactured at NASA's Wallops Flight Facility on Virginia's Eastern Shore, would be dropped from the balloon gondola at an altitude of about 18.6 miles (30 kilometers) to test the design's aerodynamic stability and operational concept. During its free fall, MIRCA is expected to reach speeds of up to Mach 1, roughly the speed of sound.

"If I can demonstrate the entry vehicle, I then could attract potential partners to provide the rest of the vehicle," Esper said, referring to the service module, including propulsion and attitude-control subsystems. He added that the concept might be particularly attractive to universities and researchers with limited resources.

In addition to the balloon flight, Esper said he would like to drop the entry vehicle from the International Space Station perhaps as early as 2016 -- a test that would expose the capsule to spaceflight and reentry heating conditions and further advance its technology-readiness level.

"The balloon drop of MIRCA will in itself mark the first time a CubeSat planetary entry capsule is flight tested, not only at Goddard, but anywhere else in the world," he said. "That in turn enables new opportunities in planetary exploration not available to date, and represents a game-changing opportunity for Goddard."

Lori Keesey | EurekAlert!

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>