Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Accepts Third Generation TDRS Into Network

20.08.2013
NASA has accepted ownership of its newest Tracking and Data Relay Satellite (TDRS) from Boeing after successfully completing in orbit testing. TDRS-K, will be renamed TDRS-11 upon entry into service.

“This is a major step in replenishing an aging TDRS fleet which is essential in providing communications to support space exploration,” said Badri Younes, deputy associate administrator for Space Communications and Navigation at NASA Headquarters. “We look forward to the launch of two additional satellites in the next few years to complete the replenishment program.”


TDRS-k, ready for launch.
Image Credit: Photo courtesy of Boeing

The TDRS fleet provides communications support to an array of science missions, as well as several launch vehicles. The network has provided critical real-time communication with NASA’s human spaceflights since early in the Space Shuttle Program. TDRS network operations continue to provide support for International Space Station activities.

“The acceptance of this spacecraft is the result of many years of hard work by dedicated team members at NASA and Boeing,” said Jeffrey Gramling, TDRS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Md. “This next generation of spacecraft ensure network continuity for at least another decade.”

Goddard is home to the TDRS Project Office, which is responsible for the development and launch of the communication satellites. The Boeing Company headquartered in Chicago, Ill., is the private contractor for the TDRS K, L and M satellites. TDRS is the space element of NASA’s Space Network, providing the critical communication lifeline for NASA missions. NASA’s Space Communications and Navigation Program, part of the Human Exploration and Operations Mission Directorate at the agency’s Headquarters in Washington, is responsible for NASA’s Space Network.

The TDRS fleet now consists of eight satellites with ground stations at White Sands, N.M. and Guam. NASA’s upgrade to the network includes modifications to those ground terminals.

The TDRS Project was established in 1973 to provide continuous communications to NASA’s critical low Earth-orbiting science and human spaceflight missions. When TDRS-1 was launched from space shuttle Challenger in 1983, TDRS spacecraft were the largest, most sophisticated communication satellites ever built. TDRS-1 provided NASA an exponential increase in data rates and contact time communicating with spacecraft.

NASA continued adding TDRS spacecraft (the first seven were built by TRW, later to become Northrop Grumman) until 1995. TDRS-2 was lost during the Challenger accident in 1986. From 2000 to 2002, NASA added three spacecraft to the fleet, establishing the second generation. The H, I, and J, satellites were built by Hughes (later to become Boeing) and continue to operate along with members of the now aging first generation. TDRS-1 was retired in 2010 and TDRS-4 in 2011.

On Jan. 30, TDRS-K was launched aboard an Atlas V rocket from Cape Canaveral Air Force Station in Florida. Before this year’s launch it had been 10 years since NASA last added a TDRS to the network. These next-generation satellites are being built at Boeing’s Space & Intelligence Systems in El Segundo, Calif.

TDRS-K, L, M, together with the other spacecraft that continue to operate well beyond their design life, will ensure NASA’s critical missions will be supported into the 2020’s. The launch of TDRS-L is slated for January 2014 and TDRS-M will be ready for launch in December of 2015.

For more information about NASA’s TDRS satellites, visit:
http://tdrs.gsfc.nasa.gov
For more information about SCaN, visit:
www.nasa.gov/SCaN
Dewayne Washington
NASA’s Goddard Space Flight Center in Greenbelt, Md.

Dewayne Washington | EurekAlert!
Further information:
http://www.nasa.gov/SCaN
http://www.nasa.gov/content/goddard/nasa-accepts-third-generation-tdrs-into-network/#.UhKAJz92EhV

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>