Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Swift finds most distant gamma-ray burst yet

30.05.2011
On April 29, 2009, a five-second-long burst of gamma rays from the constellation Canes Venatici triggered the Burst Alert Telescope on NASA's Swift satellite. As with most gamma-ray bursts, this one -- now designated GRB 090429B -- heralded the death of a star some 30 times the sun's mass and the likely birth of a new black hole.

"What's important about this event isn't so much the 'what' but the 'where,'" said Neil Gehrels, lead scientist for Swift at NASA's Goddard Space Flight Center in Greenbelt, Md. "GRB 090429B exploded at the cosmic frontier, among some of the earliest stars to form in our universe."

Because light moves at finite speed, looking farther into the universe means looking back in time. GRB 090429B gives astronomers a glimpse of the cosmos as it appeared some 520 million years after the universe began.

Now, after two years of painstaking analysis, astronomers studying the afterglow of the explosion say they're confident that the blast was the farthest explosion yet identified -- and at a distance of 13.14 billion light-years, a contender for the most distant object now known.

Swift's discoveries continue to push the cosmic frontier deeper back in time. A gamma-ray burst detected on Sept. 4, 2005, was shown to be 12.77 billion light-years away. Until the new study dethroned it, GRB 090423, which was detected just six days before the current record-holder, reigned with a distance of about 13.04 billion light-years.

Gamma-ray bursts are the universe's most luminous explosions, emitting more energy in a few seconds than our sun will during its energy-producing lifetime. Most occur when massive stars run out of nuclear fuel. When such a star runs out of fuel, its core collapses and likely forms a black hole surrounded by a dense hot disk of gas. Somehow, the black hole diverts part of the infalling matter into a pair of high-energy particle jets that tear through the collapsing star.

The jets move so fast -- upwards of 99.9 percent the speed of light -- that collisions within them produce gamma rays. When the jets breach the star's surface, a gamma-ray burst is born. The jet continues on, later striking gas beyond the star to produce afterglows.

"Catching these afterglows before they fade out is the key to determining distances for the bursts," Gehrels said. "Swift is designed to detect the bursts, rapidly locate them, and communicate the position to astronomers around the world." Once word gets out, the race is on to record as much information from the fading afterglow as possible.

In certain colors, the brightness of a distant object shows a characteristic drop caused by intervening gas clouds. The farther away the object is, the longer the wavelength where this sudden fade-out begins. Exploiting this effect gives astronomers a quick estimate of the blast's "redshift" -- a color shift toward the less energetic red end of the electromagnetic spectrum that indicates distance.

The Gemini-North Telescope in Hawaii captured optical and infrared images of GRB 090429B's quickly fading afterglow within about three hours of Swift's detection. "Gemini was the right telescope, in the right place, at the right time," said lead researcher Antonino Cucchiara at the University of California, Berkeley. "The data from Gemini was instrumental in allowing us to reach the conclusion that the object is likely the most distant GRB ever seen."

The team combined the Gemini images with wider-field images from the United Kingdom Infrared Telescope, which is also located on Mauna Kea in Hawaii, to narrow estimates of the object's redshift.

Announcing the finding at the American Astronomical Society meeting in Boston on Wednesday, May 25, the team reported a redshift of 9.4 for GRB 090429B. Other researchers have made claims for galaxies at comparable or even larger redshifts, with uncertain distance estimates, and the burst joins them as a candidate for the most distant object known.

Studies by NASA's Hubble Space Telescope and the Very Large Telescope in Chile were unable to locate any other object at the burst location once its afterglow had faded away, which means that the burst's host galaxy is so distant that it couldn't be seen with the best existing telescopes. "Because of this, and the information provided by the Swift satellite, our confidence is extremely high that this event happened very, very early in the history of our universe," Cucchiara said.

Swift, launched in November 2004, is managed by Goddard. It was built and is being operated in collaboration with Penn State University, University Park, Pa., the Los Alamos National Laboratory in New Mexico, and General Dynamics of Gilbert, Ariz., in the U.S. International collaborators include the University of Leicester and Mullard Space Sciences Laboratory in the United Kingdom, Brera Observatory and the Italian Space Agency in Italy, and additional partners in Germany and Japan.

Images: http://www.nasa.gov/mission_pages/swift/bursts/swift-20110527.html

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>