Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA's Swift finds most distant gamma-ray burst yet

On April 29, 2009, a five-second-long burst of gamma rays from the constellation Canes Venatici triggered the Burst Alert Telescope on NASA's Swift satellite. As with most gamma-ray bursts, this one -- now designated GRB 090429B -- heralded the death of a star some 30 times the sun's mass and the likely birth of a new black hole.

"What's important about this event isn't so much the 'what' but the 'where,'" said Neil Gehrels, lead scientist for Swift at NASA's Goddard Space Flight Center in Greenbelt, Md. "GRB 090429B exploded at the cosmic frontier, among some of the earliest stars to form in our universe."

Because light moves at finite speed, looking farther into the universe means looking back in time. GRB 090429B gives astronomers a glimpse of the cosmos as it appeared some 520 million years after the universe began.

Now, after two years of painstaking analysis, astronomers studying the afterglow of the explosion say they're confident that the blast was the farthest explosion yet identified -- and at a distance of 13.14 billion light-years, a contender for the most distant object now known.

Swift's discoveries continue to push the cosmic frontier deeper back in time. A gamma-ray burst detected on Sept. 4, 2005, was shown to be 12.77 billion light-years away. Until the new study dethroned it, GRB 090423, which was detected just six days before the current record-holder, reigned with a distance of about 13.04 billion light-years.

Gamma-ray bursts are the universe's most luminous explosions, emitting more energy in a few seconds than our sun will during its energy-producing lifetime. Most occur when massive stars run out of nuclear fuel. When such a star runs out of fuel, its core collapses and likely forms a black hole surrounded by a dense hot disk of gas. Somehow, the black hole diverts part of the infalling matter into a pair of high-energy particle jets that tear through the collapsing star.

The jets move so fast -- upwards of 99.9 percent the speed of light -- that collisions within them produce gamma rays. When the jets breach the star's surface, a gamma-ray burst is born. The jet continues on, later striking gas beyond the star to produce afterglows.

"Catching these afterglows before they fade out is the key to determining distances for the bursts," Gehrels said. "Swift is designed to detect the bursts, rapidly locate them, and communicate the position to astronomers around the world." Once word gets out, the race is on to record as much information from the fading afterglow as possible.

In certain colors, the brightness of a distant object shows a characteristic drop caused by intervening gas clouds. The farther away the object is, the longer the wavelength where this sudden fade-out begins. Exploiting this effect gives astronomers a quick estimate of the blast's "redshift" -- a color shift toward the less energetic red end of the electromagnetic spectrum that indicates distance.

The Gemini-North Telescope in Hawaii captured optical and infrared images of GRB 090429B's quickly fading afterglow within about three hours of Swift's detection. "Gemini was the right telescope, in the right place, at the right time," said lead researcher Antonino Cucchiara at the University of California, Berkeley. "The data from Gemini was instrumental in allowing us to reach the conclusion that the object is likely the most distant GRB ever seen."

The team combined the Gemini images with wider-field images from the United Kingdom Infrared Telescope, which is also located on Mauna Kea in Hawaii, to narrow estimates of the object's redshift.

Announcing the finding at the American Astronomical Society meeting in Boston on Wednesday, May 25, the team reported a redshift of 9.4 for GRB 090429B. Other researchers have made claims for galaxies at comparable or even larger redshifts, with uncertain distance estimates, and the burst joins them as a candidate for the most distant object known.

Studies by NASA's Hubble Space Telescope and the Very Large Telescope in Chile were unable to locate any other object at the burst location once its afterglow had faded away, which means that the burst's host galaxy is so distant that it couldn't be seen with the best existing telescopes. "Because of this, and the information provided by the Swift satellite, our confidence is extremely high that this event happened very, very early in the history of our universe," Cucchiara said.

Swift, launched in November 2004, is managed by Goddard. It was built and is being operated in collaboration with Penn State University, University Park, Pa., the Los Alamos National Laboratory in New Mexico, and General Dynamics of Gilbert, Ariz., in the U.S. International collaborators include the University of Leicester and Mullard Space Sciences Laboratory in the United Kingdom, Brera Observatory and the Italian Space Agency in Italy, and additional partners in Germany and Japan.


Francis Reddy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>