Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Swift finds most distant gamma-ray burst yet

30.05.2011
On April 29, 2009, a five-second-long burst of gamma rays from the constellation Canes Venatici triggered the Burst Alert Telescope on NASA's Swift satellite. As with most gamma-ray bursts, this one -- now designated GRB 090429B -- heralded the death of a star some 30 times the sun's mass and the likely birth of a new black hole.

"What's important about this event isn't so much the 'what' but the 'where,'" said Neil Gehrels, lead scientist for Swift at NASA's Goddard Space Flight Center in Greenbelt, Md. "GRB 090429B exploded at the cosmic frontier, among some of the earliest stars to form in our universe."

Because light moves at finite speed, looking farther into the universe means looking back in time. GRB 090429B gives astronomers a glimpse of the cosmos as it appeared some 520 million years after the universe began.

Now, after two years of painstaking analysis, astronomers studying the afterglow of the explosion say they're confident that the blast was the farthest explosion yet identified -- and at a distance of 13.14 billion light-years, a contender for the most distant object now known.

Swift's discoveries continue to push the cosmic frontier deeper back in time. A gamma-ray burst detected on Sept. 4, 2005, was shown to be 12.77 billion light-years away. Until the new study dethroned it, GRB 090423, which was detected just six days before the current record-holder, reigned with a distance of about 13.04 billion light-years.

Gamma-ray bursts are the universe's most luminous explosions, emitting more energy in a few seconds than our sun will during its energy-producing lifetime. Most occur when massive stars run out of nuclear fuel. When such a star runs out of fuel, its core collapses and likely forms a black hole surrounded by a dense hot disk of gas. Somehow, the black hole diverts part of the infalling matter into a pair of high-energy particle jets that tear through the collapsing star.

The jets move so fast -- upwards of 99.9 percent the speed of light -- that collisions within them produce gamma rays. When the jets breach the star's surface, a gamma-ray burst is born. The jet continues on, later striking gas beyond the star to produce afterglows.

"Catching these afterglows before they fade out is the key to determining distances for the bursts," Gehrels said. "Swift is designed to detect the bursts, rapidly locate them, and communicate the position to astronomers around the world." Once word gets out, the race is on to record as much information from the fading afterglow as possible.

In certain colors, the brightness of a distant object shows a characteristic drop caused by intervening gas clouds. The farther away the object is, the longer the wavelength where this sudden fade-out begins. Exploiting this effect gives astronomers a quick estimate of the blast's "redshift" -- a color shift toward the less energetic red end of the electromagnetic spectrum that indicates distance.

The Gemini-North Telescope in Hawaii captured optical and infrared images of GRB 090429B's quickly fading afterglow within about three hours of Swift's detection. "Gemini was the right telescope, in the right place, at the right time," said lead researcher Antonino Cucchiara at the University of California, Berkeley. "The data from Gemini was instrumental in allowing us to reach the conclusion that the object is likely the most distant GRB ever seen."

The team combined the Gemini images with wider-field images from the United Kingdom Infrared Telescope, which is also located on Mauna Kea in Hawaii, to narrow estimates of the object's redshift.

Announcing the finding at the American Astronomical Society meeting in Boston on Wednesday, May 25, the team reported a redshift of 9.4 for GRB 090429B. Other researchers have made claims for galaxies at comparable or even larger redshifts, with uncertain distance estimates, and the burst joins them as a candidate for the most distant object known.

Studies by NASA's Hubble Space Telescope and the Very Large Telescope in Chile were unable to locate any other object at the burst location once its afterglow had faded away, which means that the burst's host galaxy is so distant that it couldn't be seen with the best existing telescopes. "Because of this, and the information provided by the Swift satellite, our confidence is extremely high that this event happened very, very early in the history of our universe," Cucchiara said.

Swift, launched in November 2004, is managed by Goddard. It was built and is being operated in collaboration with Penn State University, University Park, Pa., the Los Alamos National Laboratory in New Mexico, and General Dynamics of Gilbert, Ariz., in the U.S. International collaborators include the University of Leicester and Mullard Space Sciences Laboratory in the United Kingdom, Brera Observatory and the Italian Space Agency in Italy, and additional partners in Germany and Japan.

Images: http://www.nasa.gov/mission_pages/swift/bursts/swift-20110527.html

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>