Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's solar dynamics observatory catches 'surfer' waves on the sun

08.06.2011
Cue the surfing music. Scientists have spotted the iconic surfer's wave rolling through the atmosphere of the sun. This makes for more than just a nice photo-op: the waves hold clues as to how energy moves through that atmosphere, known as the corona.

Since scientists know how these kinds of waves -- initiated by a Kelvin-Helmholtz instability if you're being technical -- disperse energy in the water, they can use this information to better understand the corona. This in turn, may help solve an enduring mystery of why the corona is thousands of times hotter than originally expected.


Surfer waves -- initiated in the sun, as they are in the water, by a process called a Kelvin-Helmholtz instability -- have been found in the sun's atmosphere. Credit: Credit: NASA/SDO/Astrophysical Journal Letters

"One of the biggest questions about the solar corona is the heating mechanism," says solar physicist Leon Ofman of NASA's Goddard Space Flight Center, Greenbelt, Md. and Catholic University, Washington. "The corona is a thousand times hotter than the sun's visible surface, but what heats it up is not well-understood. People have suggested that waves like this might cause turbulence which cause heating, but now we have direct evidence of Kelvin-Helmholtz waves."

Ofman and his Goddard colleague, Barbara Thompson, spotted these waves in images taken on April 8, 2010. These were some of the first images caught on camera by the Solar Dynamics Observatory (SDO), a solar telescope with outstanding resolution that launched on February 11, 2010 and began capturing data on March 24 of that year. The team's results appeared online in Astrophysical Journal Letters on May 19, 2011 and will be published in the journal on June 10.

That these "surfer" waves exist in the sun at all is not necessarily a surprise, since they do appear in so many places in nature including, for example, clouds on Earth and between the bands of Saturn. But observing the sun from almost 93 million miles away means it's not easy to physically see details like this. That's why the resolution available with SDO gets researchers excited.

"The waves we're seeing in these images are so small," says Thompson who in addition to being a co-author on this paper is the deputy project scientist for SDO. "They're only the size of the United States," she laughs.

Kelvin-Helmholtz instabilities occur when two fluids of different densities or different speeds flow by each other. In the case of ocean waves, that's the dense water and the lighter air. As they flow past each other, slight ripples can be quickly amplified into the giant waves loved by surfers. In the case of the solar atmosphere, which is made of a very hot and electrically charged gas called plasma, the two flows come from an expanse of plasma erupting off the sun's surface as it passes by plasma that is not erupting. The difference in flow speeds and densities across this boundary sparks the instability that builds into the waves.

In order to confirm this description, the team developed a computer model to see what takes place in the region. Their model showed that these conditions could indeed lead to giant surfing waves rolling through the corona.

Ofman says that despite the fact that Kelvin-Helmholtz instabilities have been spotted in other places, there was no guarantee they'd be spotted in the sun's corona, which is permeated with magnetic fields. "I wasn't sure that this instability could evolve on the sun, since magnetic fields can have a stabilizing effect," he says. "Now we know that this instability can appear even though the solar plasma is magnetized."

Seeing the big waves suggests they can cascade down to smaller forms of turbulence too. Scientists believe that the friction created by turbulence – the simple rolling of material over and around itself – could help add heating energy to the corona. The analogy is the way froth at the top of a surfing wave provides friction that will heat up the wave. (Surfers of course don't ever notice this, as any extra heat quickly dissipates into the rest of the water.)

Hammering out the exact mechanism for heating the corona will continue to intrigue researchers for some time but, says Thompson, SDO's ability to capture images of the entire sun every 12 seconds with such precise detail will be a great boon. "SDO is not the first solar observatory with high enough visual resolution to be able to see something like this," she says. "But for some reason Kelvin-Helmholtz features are rare. The fact that we spotted something so interesting in some of the first images really shows the strength of SDO."

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>