Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA'S RXTE Helps Pinpoint Launch of 'Bullets' in a Black Hole's Jet

11.01.2012
Using observations from NASA's Rossi X-ray Timing Explorer (RXTE) satellite and the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) radio telescope, an international team of astronomers has identified the moment when a black hole in our galaxy launched super-fast knots of gas into space.

Racing outward at about one-quarter the speed of light, these "bullets" of ionized gas are thought to arise from a region located just outside the black hole's event horizon, the point beyond which nothing can escape.

"Like a referee at a sports game, we essentially rewound the footage on the bullets' progress, pinpointing when they were launched," said Gregory Sivakoff of the University of Alberta in Canada. He presented the findings today at the American Astronomical Society meeting in Austin, Texas. "With the unique capabilities of RXTE and the VLBA, we can associate their ejection with changes that likely signaled the start of the process."

The research centered on the mid-2009 outburst of a binary system known as H1743–322, located about 28,000 light-years away toward the constellation Scorpius. Discovered by NASA's HEAO-1 satellite in 1977, the system is composed of a normal star and a black hole of modest but unknown masses. Their orbit around each other is measured in days, which puts them so close together that the black hole pulls a continuous stream of matter from its stellar companion. The flowing gas forms a flattened accretion disk millions of miles across, several times wider than our sun, centered on the black hole. As matter swirls inward, it is compressed and heated to tens of millions of degrees, so hot that it emits X-rays.

Some of the infalling matter becomes re-directed out of the accretion disk as dual, oppositely directed jets. Most of the time, the jets consist of a steady flow of particles. Occasionally, though, they morph into more powerful outflows that hurl massive gas blobs at significant fractions of the speed of light.

In early June 2009, H1743–322 underwent this transition as astronomers watched with RXTE, the VLBA, the Very Large Array near Socorro, N.M., and the Australia Telescope Compact Array (ATCA) near Narrabri in New South Wales. The observatories captured changes in the system's X-ray and radio emissions as the transformation occurred.

From May 28 to June 2, the system's X-ray and radio emissions were fairly steady, although RXTE data show that cyclic X-ray variations, known as quasi-periodic oscillations or QPOs, gradually increased in frequency over the same period. On June 4, ATCA measurements showed that the radio emission had faded significantly.

Astronomers interpret QPOs as signals produced by the interaction of clumps of ionized gas in the accretion disk near the black hole. When RXTE next looked at the system on June 5, the QPOs were gone.

The same day, the radio emission increased. An extremely detailed VLBA image revealed a bright, radio-emitting bullet of gas moving outward from the system in the direction of one of the jets. On June 6, a second blob, moving away in the opposite direction, was seen.

Until now, astronomers had associated the onset of the radio outburst with the bullet ejection event. However, based on the VLBA data, the team calculated that the bullets were launched on June 3, about two days before the main radio flare. A paper on the findings will be published in the Monthly Notices of the Royal Astronomical Society.

"This research provides new clues about the conditions needed to initiate a jet and can guide our thinking about how it happens," said Chris Done, an astrophysicist at the University of Durham, England, who was not involved in the study.

A super-sized version of the same phenomenon occurs at the center of an active galaxy, where a black hole weighing millions to billions of times our sun's mass can drive outflows extending millions of light-years.

"Black hole jets in binary star systems act as fast-forwarded versions of their galactic-scale cousins, giving us insights into how they work and how their enormous energy output can influence the growth of galaxies and clusters of galaxies," said lead researcher James Miller-Jones at the International Center for Radio Astronomy Research at Curtin University in Perth, Australia.

The Rossi X-ray Timing Explorer, which operated from Dec. 1995 to Jan. 2012, was managed by NASA's Goddard Space Flight Center in Greenbelt, Md. The VLBA, the world's largest and highest-resolution astronomical instrument, is controlled from the National Radio Astronomy Observatory's Domenici Science Operations Center.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov/topics/universe/features/rxte-bullets.html

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>