Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA'S RXTE Helps Pinpoint Launch of 'Bullets' in a Black Hole's Jet

11.01.2012
Using observations from NASA's Rossi X-ray Timing Explorer (RXTE) satellite and the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) radio telescope, an international team of astronomers has identified the moment when a black hole in our galaxy launched super-fast knots of gas into space.

Racing outward at about one-quarter the speed of light, these "bullets" of ionized gas are thought to arise from a region located just outside the black hole's event horizon, the point beyond which nothing can escape.

"Like a referee at a sports game, we essentially rewound the footage on the bullets' progress, pinpointing when they were launched," said Gregory Sivakoff of the University of Alberta in Canada. He presented the findings today at the American Astronomical Society meeting in Austin, Texas. "With the unique capabilities of RXTE and the VLBA, we can associate their ejection with changes that likely signaled the start of the process."

The research centered on the mid-2009 outburst of a binary system known as H1743–322, located about 28,000 light-years away toward the constellation Scorpius. Discovered by NASA's HEAO-1 satellite in 1977, the system is composed of a normal star and a black hole of modest but unknown masses. Their orbit around each other is measured in days, which puts them so close together that the black hole pulls a continuous stream of matter from its stellar companion. The flowing gas forms a flattened accretion disk millions of miles across, several times wider than our sun, centered on the black hole. As matter swirls inward, it is compressed and heated to tens of millions of degrees, so hot that it emits X-rays.

Some of the infalling matter becomes re-directed out of the accretion disk as dual, oppositely directed jets. Most of the time, the jets consist of a steady flow of particles. Occasionally, though, they morph into more powerful outflows that hurl massive gas blobs at significant fractions of the speed of light.

In early June 2009, H1743–322 underwent this transition as astronomers watched with RXTE, the VLBA, the Very Large Array near Socorro, N.M., and the Australia Telescope Compact Array (ATCA) near Narrabri in New South Wales. The observatories captured changes in the system's X-ray and radio emissions as the transformation occurred.

From May 28 to June 2, the system's X-ray and radio emissions were fairly steady, although RXTE data show that cyclic X-ray variations, known as quasi-periodic oscillations or QPOs, gradually increased in frequency over the same period. On June 4, ATCA measurements showed that the radio emission had faded significantly.

Astronomers interpret QPOs as signals produced by the interaction of clumps of ionized gas in the accretion disk near the black hole. When RXTE next looked at the system on June 5, the QPOs were gone.

The same day, the radio emission increased. An extremely detailed VLBA image revealed a bright, radio-emitting bullet of gas moving outward from the system in the direction of one of the jets. On June 6, a second blob, moving away in the opposite direction, was seen.

Until now, astronomers had associated the onset of the radio outburst with the bullet ejection event. However, based on the VLBA data, the team calculated that the bullets were launched on June 3, about two days before the main radio flare. A paper on the findings will be published in the Monthly Notices of the Royal Astronomical Society.

"This research provides new clues about the conditions needed to initiate a jet and can guide our thinking about how it happens," said Chris Done, an astrophysicist at the University of Durham, England, who was not involved in the study.

A super-sized version of the same phenomenon occurs at the center of an active galaxy, where a black hole weighing millions to billions of times our sun's mass can drive outflows extending millions of light-years.

"Black hole jets in binary star systems act as fast-forwarded versions of their galactic-scale cousins, giving us insights into how they work and how their enormous energy output can influence the growth of galaxies and clusters of galaxies," said lead researcher James Miller-Jones at the International Center for Radio Astronomy Research at Curtin University in Perth, Australia.

The Rossi X-ray Timing Explorer, which operated from Dec. 1995 to Jan. 2012, was managed by NASA's Goddard Space Flight Center in Greenbelt, Md. The VLBA, the world's largest and highest-resolution astronomical instrument, is controlled from the National Radio Astronomy Observatory's Domenici Science Operations Center.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov/topics/universe/features/rxte-bullets.html

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>