Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Rosetta "Alice" spectrometer reveals Earth's ultraviolet fingerprint in Earth flyby

15.01.2010
On November 13, the European Space Agency's comet orbiter spacecraft, Rosetta, swooped by Earth for its third and final gravity assist on the way to humankind's first rendezvous to orbit and study a comet in more detail than has ever been attempted.

One of the instruments aboard Rosetta is the NASA-funded ultraviolet spectrometer, Alice, which is designed to probe the composition of the comet's atmosphere and surface -- the first ultraviolet spectrometer ever to study a comet up close. During Rosetta's recent Earth flyby, researchers successfully tested Alice's performance by viewing the Earth's ultraviolet appearance.

"It's been over five years since Rosetta was launched on its 10-year journey to comet Churyumov-Gerasimenko, and Alice is working well," says instrument Principal Investigator Dr. Alan Stern, associate vice president of the Space Science and Engineering Division at Southwest Research Institute. "As one can see from the spectra we obtained during this flyby of the Earth, the instrument is in focus and shows the main ultraviolet spectral emission of our home planet. These data give a nice indication of the scientifically rich value of ultraviolet spectroscopy for studying the atmospheres of objects in space, and we're looking forward to reaching the comet and exploring its mysteries."

Dr. Paul Feldman, professor of Physics and Astronomy at the Johns Hopkins University, and an Alice co-investigator, has studied the Earth's upper atmosphere from the early days of space studies. "Although the Earth's ultraviolet emission spectrum was one of the first discoveries of the space age and has been studied by many orbiting spacecraft, the Rosetta flyby provides a unique view from which to test current models of the Sun's interaction with our atmosphere."

SwRI also developed and will operate the NASA-funded Ion and Electron Sensor aboard Rosetta. IES will simultaneously measure the flux of electrons and ions surrounding the comet over an energy range extending from the lower limits of detectability near 1 electron volt, up to 22,000 electron volts.

Thanks to an Earth gravity assist swing by in November, Rosetta is now on a course to meet its cometary target in mid-2014. Before Rosetta reaches its main target, it will explore a large asteroid called Lutetia, in July 2010. The Alice UV spectrometer will be one of the instruments mapping this ancient asteroid-

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the U.S. Rosetta project for NASA's Science Mission Directorate.

Editors: Images to accompany this story are available at http://www.swri.org/press/2010/Alice.htm.

For more information contact Maria Martinez at (210) 522-3305, Communications Department, Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228-0510.

Maria Martinez | EurekAlert!
Further information:
http://www.swri.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>