Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Robotic Refueling Demo Set to Jumpstart Expanded Capabilities in Space

11.01.2013
In mid-January, NASA will take the next step in advancing robotic satellite-servicing technologies as it tests the Robotic Refueling Mission, or RRM aboard the International Space Station. The investigation may one day substantially impact the many satellites that deliver products Americans rely upon daily, such as weather reports, cell phones and television news.

During five days of operations, controllers from NASA and the Canadian Space Agency will use the space station's remotely operated Special Purpose Dexterous Manipulator, or Dextre, robot to simulate robotic refueling in space.

Operating a space-based robotic arm from the ground is a feat on its own, but NASA will do more than just robotics work as controllers remotely snip wires, unscrew caps and transfer simulated fuel. The team also will demonstrate tools, technologies and techniques that could one day make satellites in space greener, more robust and more capable of delivering essential services to people on Earth.

Why Fix or Refuel a Satellite?

"Every satellite has a lifespan and eventual retirement date, determined by the reliability of its components and how much fuel it can carry," explains Benjamin Reed, deputy project manager of NASA's Satellite Servicing Capabilities Office, or SSCO.

Repairing and refueling satellites already in place, Reed asserts, can be far less expensive than building and launching entirely new spacecraft, potentially saving millions, even billions of dollars and many years of work.

The RRM demonstration specifically tests what it would take to repair and refuel satellites traveling the busy space highway of geosynchronous Earth orbit, or GEO. Located about 22,000 miles above Earth, this orbital path is home to more than 400 satellites, many of which beam communications, television and weather data to customers worldwide.

By developing robotic capabilities to repair and refuel GEO satellites, NASA hopes to add precious years of functional life to satellites and expand options for operators who face unexpected emergencies, tougher economic demands and aging fleets. NASA also hopes that these new technologies will help boost the commercial satellite-servicing industry that is rapidly gaining momentum.

Besides aiding the GEO satellite community, a capability to fix and relocate "ailing" satellites also could help manage the growing orbital debris problem that threatens continued space operations, ultimately making space greener and more sustainable.

How RRM Is Making a Difference

Built by SSCO in the span of 18 months, the washing-machine-sized RRM module contains the components, activity boards and tools to practice several of the tasks that would be performed in orbit during a real servicing mission. Launched to the space station on July 8, 2011, aboard the final mission of the Space Shuttle Program, RRM was the last payload an astronaut ever removed from a shuttle.

In 2012, RRM demonstrated dexterous robotic operations in space. Dextre's 12-foot arm and accompanying RRM tool successfully snipped two twisted wires -- each the thickness of two sheets of paper -- with only a few millimeters of clearance: a task essential to the satellite refueling process.

The RRM refueling demonstration on Jan. 14-24 will employ the Canadian-built Dextre, NASA's RRM module and four unique RRM tools to show that space robots controlled from Earth -- hundreds or even thousands of miles below -- can transfer fuel to satellites with triple-sealed valves that were never designed to be accessed.

"The RRM operations team is very excited about the upcoming refueling demonstration," says Charlie Bacon, RRM operations manager. "Over the last two years, the team has put in more than 300 hours of preparation -- reviewing procedures, running simulations, and communicating with team members from other NASA centers and our international partners. When we finally execute the namesake task of RRM, we anticipate that our work will culminate in proving that in-orbit satellite refueling is no longer future technology -- it's current technology."

Although the RRM module will never fix or refuel a satellite itself, its advanced tools and practice runs are laying the foundation for future in-orbit robotic servicing missions. Additional RRM demonstrations will continue into 2013, with a new round of servicing task boards, tools and activities slated to continue its investigations through 2015.

What's Next in Robotic Satellite Servicing?

The satellite-servicing concept that RRM is advancing is one that NASA has been developing for years. Beginning with the Solar Maximum repair mission in 1984, the servicing philosophy paved the way for five successful astronaut-based missions to upgrade and repair the Hubble Space Telescope and has been practiced more recently in spacewalks to assemble and maintain the space station.

With the RRM on the space station and a robust technology development campaign being conducted on the ground, NASA is testing capabilities for a new robotic servicing frontier. Since 2009, the Satellite Servicing Capabilities Office at NASA's Goddard Space Flight Center in Greenbelt, Md., has been aggressively advancing the robotic technologies for a free-flying servicer spacecraft that could access, repair and refuel satellites in GEO.

To this end, the SSCO team has been studying a conceptual servicing mission and building technologies to address uncharted territory such as autonomous rendezvous and docking, propellant transfer systems for zero gravity and specialized algorithms (computer commands) to orchestrate and synchronize satellite-servicing operations. A systems engineering review on this conceptual mission was recently conducted with positive responses from peer experts and external participants.

Reed and the SSCO team see many applications across NASA for these new, game-changing capabilities.

"The technologies we're building to help rescue satellites in five years could be the very same ones used to clean up space ten years in the future or save a spacecraft on the way to Mars 30 years from now," says Reed. "NASA is acting today to ensure that we have the capabilities America needs for the future. With satellite servicing technologies, we're bolstering the agency's long-term strategy as we invest in near-term tactical technology investments. RRM is just the beginning."

by Adrienne Alessandro
NASA's Goddard Space Flight Center

Adrienne Alessandro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/station/research/news/rrm_capabilities.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>