Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Lander Sees, Feels Martian Whirlwinds in Action

12.09.2008
NASA's Phoenix Mars Lander has photographed several dust devils dancing across the arctic plain this week and sensed a dip in air pressure as one passed near the lander.

These dust-lofting whirlwinds had been expected in the area, but none had been detected in earlier Phoenix images.

The Surface Stereo Imager camera on Phoenix took 29 images of the western and southwestern horizon on Sept. 8, during mid-day hours of the lander's 104th Martian day. The next day, after the images had been transmitted to Earth, the Phoenix science team noticed a dust devil right away.

"It was a surprise to have a dust devil so visible that it stood with just the normal processing we do," said Mark Lemmon of Texas A&M University, College Station, lead scientist for the stereo camera. "Once we saw a couple that way, we did some additional processing and found there are dust devils in 12 of the images."

At least six different dust devils appear in the images, some of them in more than one image. They range in diameter from about 2 meters (7 feet) to about 5 meters (16 feet).

"It will be very interesting to watch over the next days and weeks to see if there are lots of dust devils or if this was an isolated event," Lemmon said.
The Phoenix team is not worried about any damage to the spacecraft from these swirling winds. "With the thin atmosphere on Mars, the wind loads we might experience from dust devil winds are well within the design of the vehicle,"

said Ed Sedivy, Phoenix program manager at Lockheed Martin Space Systems Company, Denver, which made the spacecraft. "The lander is very rigid with the exception of the solar arrays, which once deployed, latched into position and became a tension structure."

Phoenix monitors air pressure every day, and on the same day the camera saw dust devils, the pressure meter recorded a sharper dip than ever before. The change was still less than the daily change in air pressure from daytime to nighttime, but over a much shorter time.

"Throughout the mission, we have been detecting vortex structures that lower the pressure for 20 to 30 seconds during the middle part of the day," said Peter Taylor of York University, Toronto, Canada, a member of the Phoenix science team. "In the last few weeks, we've seen the intensity increasing, and now these vortices appear to have become strong enough to pick up dust."

A key factor in the whirlwinds getting stronger is an increase in the difference between daytime and nighttime temperatures. Daytime highs at the Phoenix site are still about minus 30 Celsius (minus 22 Fahrenheit), but nighttime lows have been dropping a few degrees, getting close to minus 90 Celsius (minus 130 Fahrenheit).

The same day as the dust devils were seen, the photographed swinging of Phoenix's telltale wind gauge indicated wind speeds exceeding 5 meters per second (11 miles per hour).

Images from spacecraft orbiting Mars had previously indicated that dust devils exist in the region where Phoenix landed.

"We expected dust devils, but we are not sure how frequently," said Phoenix Project Scientist Leslie Tamppari of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "It could be they are rare and Phoenix got lucky. We'll keep looking for dust devils at the Phoenix site to see if they are common or not."

The dust devils that Phoenix has observed so far are much smaller than dust devils that NASA's Mars Exploration Rover Spirit has photographed much closer to the equator.

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at NASA's Jet Propulsion Laboratory in Pasadena, Calif., and development partnership at Lockheed Martin in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://www.nasa.gov/phoenix

Further reports about: Fahrenheit Mars NASA PHOENIX Propulsion Whirlwinds atmosphere spacecraft swirling winds

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>