Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA's Phoenix Lander Sees, Feels Martian Whirlwinds in Action

NASA's Phoenix Mars Lander has photographed several dust devils dancing across the arctic plain this week and sensed a dip in air pressure as one passed near the lander.

These dust-lofting whirlwinds had been expected in the area, but none had been detected in earlier Phoenix images.

The Surface Stereo Imager camera on Phoenix took 29 images of the western and southwestern horizon on Sept. 8, during mid-day hours of the lander's 104th Martian day. The next day, after the images had been transmitted to Earth, the Phoenix science team noticed a dust devil right away.

"It was a surprise to have a dust devil so visible that it stood with just the normal processing we do," said Mark Lemmon of Texas A&M University, College Station, lead scientist for the stereo camera. "Once we saw a couple that way, we did some additional processing and found there are dust devils in 12 of the images."

At least six different dust devils appear in the images, some of them in more than one image. They range in diameter from about 2 meters (7 feet) to about 5 meters (16 feet).

"It will be very interesting to watch over the next days and weeks to see if there are lots of dust devils or if this was an isolated event," Lemmon said.
The Phoenix team is not worried about any damage to the spacecraft from these swirling winds. "With the thin atmosphere on Mars, the wind loads we might experience from dust devil winds are well within the design of the vehicle,"

said Ed Sedivy, Phoenix program manager at Lockheed Martin Space Systems Company, Denver, which made the spacecraft. "The lander is very rigid with the exception of the solar arrays, which once deployed, latched into position and became a tension structure."

Phoenix monitors air pressure every day, and on the same day the camera saw dust devils, the pressure meter recorded a sharper dip than ever before. The change was still less than the daily change in air pressure from daytime to nighttime, but over a much shorter time.

"Throughout the mission, we have been detecting vortex structures that lower the pressure for 20 to 30 seconds during the middle part of the day," said Peter Taylor of York University, Toronto, Canada, a member of the Phoenix science team. "In the last few weeks, we've seen the intensity increasing, and now these vortices appear to have become strong enough to pick up dust."

A key factor in the whirlwinds getting stronger is an increase in the difference between daytime and nighttime temperatures. Daytime highs at the Phoenix site are still about minus 30 Celsius (minus 22 Fahrenheit), but nighttime lows have been dropping a few degrees, getting close to minus 90 Celsius (minus 130 Fahrenheit).

The same day as the dust devils were seen, the photographed swinging of Phoenix's telltale wind gauge indicated wind speeds exceeding 5 meters per second (11 miles per hour).

Images from spacecraft orbiting Mars had previously indicated that dust devils exist in the region where Phoenix landed.

"We expected dust devils, but we are not sure how frequently," said Phoenix Project Scientist Leslie Tamppari of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "It could be they are rare and Phoenix got lucky. We'll keep looking for dust devils at the Phoenix site to see if they are common or not."

The dust devils that Phoenix has observed so far are much smaller than dust devils that NASA's Mars Exploration Rover Spirit has photographed much closer to the equator.

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at NASA's Jet Propulsion Laboratory in Pasadena, Calif., and development partnership at Lockheed Martin in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute.

Lori Stiles | University of Arizona
Further information:

Further reports about: Fahrenheit Mars NASA PHOENIX Propulsion Whirlwinds atmosphere spacecraft swirling winds

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>