Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA'S Mars atmosphere mission given the green light to proceed to development

06.10.2010
NASA's mission to investigate the mystery of how Mars lost much of its atmosphere passed a critical milestone on October 4, 2010. NASA has given approval for the development and 2013 launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission.

Clues on the Martian surface, such as features resembling dry riverbeds and minerals that only form in the presence of liquid water, suggest that Mars once had a denser atmosphere, which supported the presence of liquid water on the surface. As part of a dramatic climate change, most of the Martian atmosphere was lost. MAVEN will make definitive scientific measurements of present-day atmospheric loss that will offer insight into the Red Planet's history.

Michael Luther, on behalf of Dr. Ed Weiler, of the NASA Headquarters Science Mission Directorate led a confirmation review panel that approved the detailed plans, instrument suite, budget, and risk factor analysis for the spacecraft.

"A better understanding of the upper atmosphere and the role that escape to space has played is required to plug a major hole in our understanding of Mars. We're really excited about having the opportunity to address these fundamental science questions," said MAVEN Principal Investigator Dr. Bruce Jakosky of the Laboratory for Atmospheric and Space Physics at the University of Colorado (CU-LASP) at Boulder.

"The team has successfully met every major milestone since selection two years ago," said MAVEN Project Manager David Mitchell of NASA's Goddard Space Flight Center, Greenbelt, Md. "Looking forward, we are well positioned for the next push to critical design review in July 2011. In three short years, we'll be heading to Mars!"

The confirmation review, formally known as "Key Decision Point C," authorized continuation of the project into the development phase and set its cost and schedule. The next major mission milestone, the critical design review, will examine the detailed MAVEN system design. After a successful critical design review, the project team will assemble the spacecraft and its instruments.

"This project is a vital complement to past, present, and future Mars missions," said Dr. Michael Meyer, lead Mars Scientist for NASA's Mars Exploration Program in Washington. "MAVEN will take us a step closer in learning about the evolution of our intriguing celestial neighbor."

NASA Goddard will manage the project, which will cost $438 million excluding the separately government-furnished launch vehicle and telecommunications relay package. Goddard will also build some of the instruments for the mission. In addition to the PI coming from CU-LASP, the university will provide science operations, build instruments, and lead Education/Public Outreach. Lockheed Martin of Littleton, Colo., will build the spacecraft based on designs from NASA's Mars Reconnaissance Orbiter and 2001 Mars Odyssey missions and perform mission operations. The University of California-Berkeley Space Sciences Laboratory will also build instruments for the mission. NASA's Jet Propulsion Laboratory, Pasadena, Calif., will provide navigation support, the Deep Space Network, and the Electra telecommunications relay hardware and operations.

For more about MAVEN, refer to: www.nasa.gov/maven

For the related feature story, click here: www.nasa.gov/mission_pages/maven/news/confirmation.html

Nancy Neal-Jones | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/maven/news/confirmation.html

Further reports about: Goddard Space Flight Center MAVEN Mars Martian Winds NASA Space

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>