Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA'S Mars atmosphere mission given the green light to proceed to development

06.10.2010
NASA's mission to investigate the mystery of how Mars lost much of its atmosphere passed a critical milestone on October 4, 2010. NASA has given approval for the development and 2013 launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission.

Clues on the Martian surface, such as features resembling dry riverbeds and minerals that only form in the presence of liquid water, suggest that Mars once had a denser atmosphere, which supported the presence of liquid water on the surface. As part of a dramatic climate change, most of the Martian atmosphere was lost. MAVEN will make definitive scientific measurements of present-day atmospheric loss that will offer insight into the Red Planet's history.

Michael Luther, on behalf of Dr. Ed Weiler, of the NASA Headquarters Science Mission Directorate led a confirmation review panel that approved the detailed plans, instrument suite, budget, and risk factor analysis for the spacecraft.

"A better understanding of the upper atmosphere and the role that escape to space has played is required to plug a major hole in our understanding of Mars. We're really excited about having the opportunity to address these fundamental science questions," said MAVEN Principal Investigator Dr. Bruce Jakosky of the Laboratory for Atmospheric and Space Physics at the University of Colorado (CU-LASP) at Boulder.

"The team has successfully met every major milestone since selection two years ago," said MAVEN Project Manager David Mitchell of NASA's Goddard Space Flight Center, Greenbelt, Md. "Looking forward, we are well positioned for the next push to critical design review in July 2011. In three short years, we'll be heading to Mars!"

The confirmation review, formally known as "Key Decision Point C," authorized continuation of the project into the development phase and set its cost and schedule. The next major mission milestone, the critical design review, will examine the detailed MAVEN system design. After a successful critical design review, the project team will assemble the spacecraft and its instruments.

"This project is a vital complement to past, present, and future Mars missions," said Dr. Michael Meyer, lead Mars Scientist for NASA's Mars Exploration Program in Washington. "MAVEN will take us a step closer in learning about the evolution of our intriguing celestial neighbor."

NASA Goddard will manage the project, which will cost $438 million excluding the separately government-furnished launch vehicle and telecommunications relay package. Goddard will also build some of the instruments for the mission. In addition to the PI coming from CU-LASP, the university will provide science operations, build instruments, and lead Education/Public Outreach. Lockheed Martin of Littleton, Colo., will build the spacecraft based on designs from NASA's Mars Reconnaissance Orbiter and 2001 Mars Odyssey missions and perform mission operations. The University of California-Berkeley Space Sciences Laboratory will also build instruments for the mission. NASA's Jet Propulsion Laboratory, Pasadena, Calif., will provide navigation support, the Deep Space Network, and the Electra telecommunications relay hardware and operations.

For more about MAVEN, refer to: www.nasa.gov/maven

For the related feature story, click here: www.nasa.gov/mission_pages/maven/news/confirmation.html

Nancy Neal-Jones | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/maven/news/confirmation.html

Further reports about: Goddard Space Flight Center MAVEN Mars Martian Winds NASA Space

More articles from Physics and Astronomy:

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

nachricht Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>