Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Kepler Mission Discovers Two Planets Transiting Same Star

27.08.2010
NASA's Kepler Mission has discovered the first confirmed planetary system with more than one planet transiting the same star.

Today's announcement of the discovery of the two planets, Kepler 9b and 9c, is based on seven months of observations of more than 156,000 stars being monitored for subtle brightness changes as part of an ongoing search for Earth-like planets outside our solar system. Scientists designated the sun-like star Kepler-9.

The inner world, Kepler 9-b, orbits its star every 19.2 days at a distance of 13 million miles, while the outer world orbits once in 38.9 days at a distance of 21 million miles. (In comparison, Mercury has an orbital period of 88 days.) They orbit nearly in resonance, with the inner planet completing two orbits for every one of the outer planet. Both are Saturn-sized gas giants, with the inner world weighing in at 0.25 Jupiter mass (80 Earths) while the outer world is a slimmer 0.17 Jupiter mass (54 Earths).

"This is the first confirmed system of more than one planet transiting the same star," said Matthew Holman, a Kepler Mission scientist from the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. Scientists confirmed the multiple transits with radial velocity observations conducted at the W.M Keck Observatory in Hawaii.

Holman said systems with multiple transiting planets are particularly rich with information that provides clues as to the physical characteristics. Specifically, astronomers can measure how the time between successive transits changes from orbit to orbit due to mutual gravity between the two worlds. "We can actually see evidence of the gravitational interaction of these two planets through the deviations in their transit times," Holman said.

"This discovery is the first clear detection of transit timing variations," he added.

In addition to the two confirmed giant planets, Holman said Kepler scientists also identified an additional "super-Earth-size" transiting planet candidate that will need additional observations to confirm if it is indeed a planet or merely a false alarm. Current observations suggest that the planetary candidate might be about 1.5 times the size of Earth and orbits the star once every 1.6 days at a distance of only 2.5 million miles.

Kepler, a space-based observatory, looks for the signatures of planets by measuring tiny decreases in the brightness of stars when planets cross in front of, or transit them. The size of the planet can be derived from the change in the star's brightness. In June, mission scientists announced the mission has identified more than 700 planet candidates, including five systems with more than one planet candidate. This is the first of those systems to be confirmed.

The 28-member Kepler science team is using ground-based telescopes and the Hubble Space Telescope and Spitzer Space Telescope to perform follow-up observations on 400 of the planet candidates. The star field that Kepler observes in the constellations Cygnus and Lyra can only be seen from ground-based observatories in spring through early fall. The data from these observations will determine which of the candidates can be identified as planets.

Without the additional information, candidates that are actual planets cannot be distinguished from false alarms, such as binary stars -- two stars that orbit each other. The size of the planetary candidates also can be only approximated until the size of the stars they orbit is determined from additional spectroscopic observations made by ground-based telescopes. In the case of Kepler-9, the planetary nature was first confirmed by the scale of the transit timing variations and was further verified by radial velocity measurements.

Kepler will continue conducting science operations until at least November 2012, searching for planets as small as Earth, including those that orbit stars in a warm habitable zone where liquid water could exist on the surface of the planet. Since transits of planets in the habitable zone of solar-like stars occur about once a year and require three transits for verification, it is expected to take at least three years to locate and verify an Earth-size planet.

This press release is being issued jointly with NASA.

Ames Research Center is responsible for the ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed the Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system, and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu
J.D. Harrington
NASA Headquarters, Washington
202-358-5241
j.d.harrington@nasa.gov
Michael Mewhinney
Ames Research Center
650-604-3937
michael.s.mewhinney@nasa.gov

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu
http://www.cfa.harvard.edu/news/2010/pr201013.html

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>