Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Kepler Mission Discovers Two Planets Transiting Same Star

27.08.2010
NASA's Kepler Mission has discovered the first confirmed planetary system with more than one planet transiting the same star.

Today's announcement of the discovery of the two planets, Kepler 9b and 9c, is based on seven months of observations of more than 156,000 stars being monitored for subtle brightness changes as part of an ongoing search for Earth-like planets outside our solar system. Scientists designated the sun-like star Kepler-9.

The inner world, Kepler 9-b, orbits its star every 19.2 days at a distance of 13 million miles, while the outer world orbits once in 38.9 days at a distance of 21 million miles. (In comparison, Mercury has an orbital period of 88 days.) They orbit nearly in resonance, with the inner planet completing two orbits for every one of the outer planet. Both are Saturn-sized gas giants, with the inner world weighing in at 0.25 Jupiter mass (80 Earths) while the outer world is a slimmer 0.17 Jupiter mass (54 Earths).

"This is the first confirmed system of more than one planet transiting the same star," said Matthew Holman, a Kepler Mission scientist from the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. Scientists confirmed the multiple transits with radial velocity observations conducted at the W.M Keck Observatory in Hawaii.

Holman said systems with multiple transiting planets are particularly rich with information that provides clues as to the physical characteristics. Specifically, astronomers can measure how the time between successive transits changes from orbit to orbit due to mutual gravity between the two worlds. "We can actually see evidence of the gravitational interaction of these two planets through the deviations in their transit times," Holman said.

"This discovery is the first clear detection of transit timing variations," he added.

In addition to the two confirmed giant planets, Holman said Kepler scientists also identified an additional "super-Earth-size" transiting planet candidate that will need additional observations to confirm if it is indeed a planet or merely a false alarm. Current observations suggest that the planetary candidate might be about 1.5 times the size of Earth and orbits the star once every 1.6 days at a distance of only 2.5 million miles.

Kepler, a space-based observatory, looks for the signatures of planets by measuring tiny decreases in the brightness of stars when planets cross in front of, or transit them. The size of the planet can be derived from the change in the star's brightness. In June, mission scientists announced the mission has identified more than 700 planet candidates, including five systems with more than one planet candidate. This is the first of those systems to be confirmed.

The 28-member Kepler science team is using ground-based telescopes and the Hubble Space Telescope and Spitzer Space Telescope to perform follow-up observations on 400 of the planet candidates. The star field that Kepler observes in the constellations Cygnus and Lyra can only be seen from ground-based observatories in spring through early fall. The data from these observations will determine which of the candidates can be identified as planets.

Without the additional information, candidates that are actual planets cannot be distinguished from false alarms, such as binary stars -- two stars that orbit each other. The size of the planetary candidates also can be only approximated until the size of the stars they orbit is determined from additional spectroscopic observations made by ground-based telescopes. In the case of Kepler-9, the planetary nature was first confirmed by the scale of the transit timing variations and was further verified by radial velocity measurements.

Kepler will continue conducting science operations until at least November 2012, searching for planets as small as Earth, including those that orbit stars in a warm habitable zone where liquid water could exist on the surface of the planet. Since transits of planets in the habitable zone of solar-like stars occur about once a year and require three transits for verification, it is expected to take at least three years to locate and verify an Earth-size planet.

This press release is being issued jointly with NASA.

Ames Research Center is responsible for the ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed the Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system, and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu
J.D. Harrington
NASA Headquarters, Washington
202-358-5241
j.d.harrington@nasa.gov
Michael Mewhinney
Ames Research Center
650-604-3937
michael.s.mewhinney@nasa.gov

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu
http://www.cfa.harvard.edu/news/2010/pr201013.html

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>