Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's IRIS Telescope Offers First Glimpse of Sun's Mysterious Atmosphere

26.07.2013
The moment when a telescope first opens its doors represents the culmination of years of work and planning -- while simultaneously laying the groundwork for a wealth of research and answers yet to come.

It is a moment of excitement and perhaps even a little uncertainty. On July 17, 2013, the international team of scientists and engineers who supported and built NASA's Interface Region Imaging Spectrograph, or IRIS, all lived through that moment. As the spacecraft orbited around Earth, the door of the telescope opened to view the mysterious lowest layers of the sun's atmosphere and the results thus far are nothing short of amazing. The data is crisp and clear, showing unprecedented detail of this little-observed region.


These two images show a section of the sun as seen by NASA's Interface Region Imaging Spectrograph, or IRIS, on the right and NASA's SDO on the left. The IRIS image provides scientists with unprecedented detail of the lowest parts of the sun's atmosphere, known as the interface region.
Image Credit: NASA/SDO/IRIS

"These beautiful images from IRIS are going to help us understand how the sun's lower atmosphere might power a host of events around the sun," said Adrian Daw, the mission scientist for IRIS at NASA's Goddard Space Flight Center in Greenbelt, Md. "Anytime you look at something in more detail than has ever been seen before, it opens up new doors to understanding. There's always that potential element of surprise."

As the telescope door opened on July 17, 2013, IRIS’s single instrument began to observe the sun in exceptional detail. IRIS’s first images showed a multitude of thin, fibril-like structures that have never been seen before, revealing enormous contrasts in density and temperature occur throughout this region even between neighboring loops that are only a few hundred miles apart. The images also show spots that rapidly brighten and dim, which provide clues to how energy is transported and absorbed throughout the region.

The IRIS images of fine structure in the interface region will help scientists track how magnetic energy contributes to heating in the sun’s atmosphere. Scientists need to observe the region in exquisite detail, because the energy flowing through it powers the upper layer of the sun’s atmosphere, the corona, to temperatures greater than 1 million kelvins (about 1.8 million F), almost a thousand times hotter than the sun's surface itself.

IRIS is a NASA Small Explorer mission that launched from Vandenberg Air Force Base, Calif., on June 27, 2013. IRIS's capabilities are uniquely tailored to unravel the interface region. Understanding the interface region is important because it forms the ultraviolet emission that impacts near-Earth space and Earth’s climate. Energy traveling through the region also helps drive the solar wind, which during extreme space weather events near Earth can affect satellites, power grids, and global positioning systems, or GPS.

Designed to research the interface region in more detail than has ever been done before, IRIS's instrument is a combination of an ultraviolet telescope and what's called a spectrograph. Light from the telescope is split into two components. The first provides high-resolution images, capturing data on about one percent of the sun at a time. While these are relatively small snapshots, the images can resolve very fine features, as small as 150 miles across.

While the images are of one wavelength of light at a time, the second component is the spectrograph that provides information about many wavelengths of light at once. The instrument splits the sun's light into its various wavelengths and measures how much of any given wavelength is present. This information is then portrayed on a graph showing spectral "lines." Taller lines correspond to wavelengths in which the sun emits relatively more light. Analysis of the spectral lines can also provide velocity, temperature and density, key information when trying to track how energy and heat moves through the region.

"The quality of images and spectra we are receiving from IRIS is amazing. This is just what we were hoping for," said Alan Title, IRIS principal investigator at the Lockheed Martin Advanced Technology Center Solar and Astrophysics Laboratory in Palo Alto, Calif. "There is much work ahead to understand what we're seeing, but the quality of the data will enable us to do that."

Not only does IRIS provide state-of-the-art observations to look at the interface region, it makes uses of advanced computing to help interpret what it sees. Indeed, interpreting the light flowing out of the interface region could not be done well prior to the advent of today's supercomputers because, in this area of the sun, the transfer and conversion of energy from one form to another is not understood.

The IRIS mission has long-term implications for understanding the genesis of space weather near Earth. Understanding how energy and solar material move through the interface region could help scientists improve forecasts for the kinds of events that can disrupt Earth technologies.

The IRIS Observatory was designed and the mission managed by Lockheed Martin. The Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., built the telescope. Montana State University in Bozeman, Mont. designed the spectrograph. NASA's Ames Research Center in Moffett Field, Calif., provides mission operations and ground data systems. Goddard manages the Small Explorer Program for NASA's Science Mission Directorate in Washington, D.C. The Norwegian Space Centre is providing regular downlinks of science data. Other contributors include the University of Oslo in Norway and Stanford University in Stanford, Calif.

For more information about the IRIS mission, visit:
www.nasa.gov/iris

Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Karen C. Fox | EurekAlert!
Further information:
http://www.nasa.gov/iris
http://www.nasa.gov/content/goddard/iris-telescope-first-glimpse-of-suns-mysterious-atmosphere/#.UfGAg23xSN9

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>