Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's IRIS Telescope Offers First Glimpse of Sun's Mysterious Atmosphere

26.07.2013
The moment when a telescope first opens its doors represents the culmination of years of work and planning -- while simultaneously laying the groundwork for a wealth of research and answers yet to come.

It is a moment of excitement and perhaps even a little uncertainty. On July 17, 2013, the international team of scientists and engineers who supported and built NASA's Interface Region Imaging Spectrograph, or IRIS, all lived through that moment. As the spacecraft orbited around Earth, the door of the telescope opened to view the mysterious lowest layers of the sun's atmosphere and the results thus far are nothing short of amazing. The data is crisp and clear, showing unprecedented detail of this little-observed region.


These two images show a section of the sun as seen by NASA's Interface Region Imaging Spectrograph, or IRIS, on the right and NASA's SDO on the left. The IRIS image provides scientists with unprecedented detail of the lowest parts of the sun's atmosphere, known as the interface region.
Image Credit: NASA/SDO/IRIS

"These beautiful images from IRIS are going to help us understand how the sun's lower atmosphere might power a host of events around the sun," said Adrian Daw, the mission scientist for IRIS at NASA's Goddard Space Flight Center in Greenbelt, Md. "Anytime you look at something in more detail than has ever been seen before, it opens up new doors to understanding. There's always that potential element of surprise."

As the telescope door opened on July 17, 2013, IRIS’s single instrument began to observe the sun in exceptional detail. IRIS’s first images showed a multitude of thin, fibril-like structures that have never been seen before, revealing enormous contrasts in density and temperature occur throughout this region even between neighboring loops that are only a few hundred miles apart. The images also show spots that rapidly brighten and dim, which provide clues to how energy is transported and absorbed throughout the region.

The IRIS images of fine structure in the interface region will help scientists track how magnetic energy contributes to heating in the sun’s atmosphere. Scientists need to observe the region in exquisite detail, because the energy flowing through it powers the upper layer of the sun’s atmosphere, the corona, to temperatures greater than 1 million kelvins (about 1.8 million F), almost a thousand times hotter than the sun's surface itself.

IRIS is a NASA Small Explorer mission that launched from Vandenberg Air Force Base, Calif., on June 27, 2013. IRIS's capabilities are uniquely tailored to unravel the interface region. Understanding the interface region is important because it forms the ultraviolet emission that impacts near-Earth space and Earth’s climate. Energy traveling through the region also helps drive the solar wind, which during extreme space weather events near Earth can affect satellites, power grids, and global positioning systems, or GPS.

Designed to research the interface region in more detail than has ever been done before, IRIS's instrument is a combination of an ultraviolet telescope and what's called a spectrograph. Light from the telescope is split into two components. The first provides high-resolution images, capturing data on about one percent of the sun at a time. While these are relatively small snapshots, the images can resolve very fine features, as small as 150 miles across.

While the images are of one wavelength of light at a time, the second component is the spectrograph that provides information about many wavelengths of light at once. The instrument splits the sun's light into its various wavelengths and measures how much of any given wavelength is present. This information is then portrayed on a graph showing spectral "lines." Taller lines correspond to wavelengths in which the sun emits relatively more light. Analysis of the spectral lines can also provide velocity, temperature and density, key information when trying to track how energy and heat moves through the region.

"The quality of images and spectra we are receiving from IRIS is amazing. This is just what we were hoping for," said Alan Title, IRIS principal investigator at the Lockheed Martin Advanced Technology Center Solar and Astrophysics Laboratory in Palo Alto, Calif. "There is much work ahead to understand what we're seeing, but the quality of the data will enable us to do that."

Not only does IRIS provide state-of-the-art observations to look at the interface region, it makes uses of advanced computing to help interpret what it sees. Indeed, interpreting the light flowing out of the interface region could not be done well prior to the advent of today's supercomputers because, in this area of the sun, the transfer and conversion of energy from one form to another is not understood.

The IRIS mission has long-term implications for understanding the genesis of space weather near Earth. Understanding how energy and solar material move through the interface region could help scientists improve forecasts for the kinds of events that can disrupt Earth technologies.

The IRIS Observatory was designed and the mission managed by Lockheed Martin. The Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., built the telescope. Montana State University in Bozeman, Mont. designed the spectrograph. NASA's Ames Research Center in Moffett Field, Calif., provides mission operations and ground data systems. Goddard manages the Small Explorer Program for NASA's Science Mission Directorate in Washington, D.C. The Norwegian Space Centre is providing regular downlinks of science data. Other contributors include the University of Oslo in Norway and Stanford University in Stanford, Calif.

For more information about the IRIS mission, visit:
www.nasa.gov/iris

Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Karen C. Fox | EurekAlert!
Further information:
http://www.nasa.gov/iris
http://www.nasa.gov/content/goddard/iris-telescope-first-glimpse-of-suns-mysterious-atmosphere/#.UfGAg23xSN9

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>