Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble Spots a Relic from a Shredded Galaxy

21.02.2012
Astronomers using NASA's Hubble Space Telescope may have found evidence for a cluster of young, blue stars encircling one of the first intermediate-mass black holes ever discovered.

Astronomers believe the black hole may once have been at the core of a now-disintegrated unseen dwarf galaxy. The discovery of the black hole and the possible star cluster has important implications for understanding the evolution of supermassive black holes and galaxies.

Astronomers know how massive stars collapse to form black holes but it is not clear how supermassive black holes, which weigh billions of times the mass of our Sun, form in the cores of galaxies. One idea is that supermassive black holes may build up through the merger of smaller black holes.

Sean Farrell of the Sydney Institute for Astronomy in Australia discovered a middleweight black hole in 2009 using the European Space Agency's XMM-Newton X-ray space telescope. Known as HLX-1 (Hyper-Luminous X-ray source 1), the black hole has an estimated weight of about 20,000 solar masses. It lies towards the edge of the galaxy ESO 243-49, 290 million light-years from Earth.

Farrell then observed HLX-1 simultaneously with NASA's Swift observatory in X-ray and Hubble in near-infrared, optical, and ultraviolet wavelengths. The intensity and the color of the light may indicate the presence of a young, massive cluster of blue stars, 250 light-years across, encircling the black hole. Hubble can't resolve the stars individually because the suspected cluster is too far away. The brightness and color is consistent with other clusters of stars seen in other galaxies, but some of the light may be coming from the gaseous disk around the black hole.

"Before this latest discovery we suspected that intermediate-mass black holes could exist, but now we understand where they may have come from," Farrell said. "The fact that there seems to be a very young cluster of stars indicates that the intermediate-mass black hole may have originated as the central black hole in a very-low-mass dwarf galaxy. The dwarf galaxy might then have been swallowed by the more massive galaxy, just as happens in our Milky Way."

From the signature of the X-rays, Farrell's team knew there would be some blue light emitted from the high temperature of the hot gas in the disk swirling around the black hole. They couldn't account for the red light coming from the disk. It would have to be produced by a much cooler gas, and they concluded this would most likely come from stars. The next step was to build a model that added the glow from a population of stars. These models favor the presence of a young massive cluster of stars encircling the black hole, but this interpretation is not unique, so more observations are needed. In particular, the studies led by Roberto Soria of the Australian International Centre for Radio Astronomy Research, using data from Hubble and the ground-based Very Large Telescope, show variations in the brightness of the light that a star cluster couldn't cause. This indicates that irradiation of the disk itself might be the dominant source of visible light, rather than a massive star cluster.

"What we can definitely say with our Hubble data is that we require both emission from an accretion disk and emission from a stellar population to explain the colors we see," said Farrell.

Such young clusters of stars are commonly found inside galaxies like the host galaxy, but not outside the flattened starry disk, as found with HLX-1. One possible scenario is that the HLX-1 black hole was the central black hole in a dwarf galaxy. The larger host galaxy may then have captured the dwarf. In this conjecture, most of the dwarf's stars would have been stripped away through the collision between the galaxies. At the same time, new young stars would have formed in the encounter. The interaction that compressed the gas around the black hole would then have also triggered star formation.

Farrell theorizes that the possible star cluster may be less than 200 million years old. This means that the bulk of the stars formed following the dwarf's collision with the larger galaxy. The age of the stars tells how long ago the two galaxies crashed into each other.

Farrell proposed for more observations this year. The new findings are published in the February 15 issue of the Astrophysical Journal. Soria and his colleagues have published their alternative conclusions in the January 17 online issue of the Monthly Notices of the Royal Astronomical Society.

For images and more information about HLX-1 and Hubble, visit:

http://hubblesite.org/news/2012/11

http://www.nasa.gov/hubble

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Ray Villard | Newswise Science News
Further information:
http://www.nasa.gov/hubble

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>